In this NSF INCLUDES Design and Development Launch Pilot the institutions of "Building on Strengths" propose to build and pilot the infrastructure, induction process, and early implementation of the Mathematician Affiliates of Color network. This network will consist of mathematicians of color from across academia and industry who want to invest time in, share their expertise with, and learn from students of color and their teachers. Building on Strengths will draw on basic needs cognitive theory to support these interactions and will focus narrowly on short and moderate term collaborations (from one month to a semester) between visiting mathematicians, students, and collaborating teachers that will involve three specific types of interactions: doing mathematics together as a habits-of-mind practice, talking about the discipline of mathematics and the experiences of mathematicians of color in that discipline, and relationship-building activities. The foundational infrastructure developed in the project will include systems for recruitment, selection and induction, a process for pairing affiliate mathematicians with classrooms, and support structures for the collaborations. To support the goals of the network a prototype virtual space will be developed in which real-time artifacts can be collected and shared from the classroom interactions. While Building on Strengths will pilot this program in the secondary context, once a viable model is established, scaling to K-16, as well as to other STEM fields, will be possible.
The research study in the project uses an exploratory sequential mixed-methods design and will be conducted in two phases. In the first, quantitative, phase of the study the following questions will be addressed: (1) Is the teacher-mathematician collaboration associated with a change for students in perception of basic human needs being met, mathematical or racial identities, or beliefs about mathematics or who can do mathematics? (2) Is the teacher-mathematician collaboration associated with a change for adults in perceptions of the role of basic needs or in adults' identities or beliefs about mathematics or who can do mathematics? In the second, qualitative, phase of the study, two types of interactions will be selected for in-depth qualitative study, identifying cases where groups of students experienced changes in their needs, identity, and beliefs. In this qualitative case-centered phase, the following questions will be explored: (1) What is the nature of the mentor-student interaction? (2) What aspects of the intervention do students feel are most relevant to them? (3) How did the implementation of the intervention differ from the anticipated intervention? The results of the study will help improve the infrastructure for, and better support the interactions between, mathematicians of color, students of color and their mathematics teachers; the outcomes will also shed light on how students experience their interactions.
DATE:
-
TEAM MEMBERS:
Michael YoungMaisha MosesAlbert CuocoEden Badertscher
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
President Obama announced in April 2013 that the Corporation for National and Community Service (CNCS) would launch a STEM AmeriCorps initiative to build student interest in STEM. A RFA is currently being prepared to be released in the late fall of 2013. This project will engage in quick response research to identify an evaluation and research agenda that can begin to inform the program launch. Thus, the timeframe for informing the initial stages of STEM AmeriCorps is relatively short, and the creation of an evaluation and research agenda is very timely. The products from the RAPID proposal are: (1) a review of the evaluation and research literature on the use of volunteers and/or mentors to build students' interest in STEM; (2) to convene a workshop to identify evaluation and research priorities to guide the initiative; and (3) a summary evaluation agenda that identifies promising directions along with the strength of evidence around key issues.
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
This project is intended to develop a model for STEM education through local libraries. There are several unique features in this endeavor. The model is being aimed at rural libraries and adult residents that are geographically remote from typical venues such as museums, zoos, and science centers. According to the 2000 census, there are 50 million individuals in this designation and the size of the group is increasing and becoming more diverse. Efforts to impact diverse audiences who are economically disadvantaged will be part of the plan. In many rural locations there are few community venues, but libraries are often present. The American Library Association and the Association Rural and Small Libraries have begun the reinvention of these libraries so they can become more attuned to the communities in which they are apart. Thus, this project is an effort to find new ways of communicating STEM concepts to a reasonably large underserved group. The design is to derive a "unit of knowledge enhancement" (some portion of Climate Change, for example) through a hybrid combination of book-club and scientific cafe further augmented with videos and web materials. Another part of the design is to enhance the base STEM knowledge of library staff and to associate the knowledge unit with an individual who has the specific STEM topic knowledge for a specific unit. Considerable effort shall be expended in developing the models for staff knowledge enhancement with a progressive number of librarians in training from 8 to 20 to 135. To build the content library model, five units of knowledge will be devised and circulated to participating libraries. Evaluation of the project includes front end, formative and summative by the Goodman Research Group. In addition to the "units of knowledge enhancement," the major results will be the model on how best to relate and educate citizens in rural environments and how to educate the library staff.
This poster shows the development of the project Scientists for Tomorrow during the three years of its implementation: two first years under the full funding of the NSF and the third year as a no-cost extension. Also the poster describes how the project was incorporating more community centers and with it more participants through the development of the "self-sustained" mode of implementation. The poster introduces also the next step of the project - the Scientists for Tomorrow - National Alliance.
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
The article describes the purpose of the evaluation for Statistics for Action (SfA): to learn to what extent SfA's set of materials and resources and training developed by math educators with input from environmental organizers, could increase numeracy among environmental organizers and the community members they serve. For this generally unpopular content (math) in an unusual context (environmental campaigns), the author describes project and evaluation design choices that worked, and those that didn’t.
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:
Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders
To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS:
Missouri AfterSchool NetworkJeff Buehler
Museums are places where visitors of all abilities and disabilities are invited to learn. This diversity offers a unique challenge how can museums ensure that everyone can benefit from the learning experience? Universal design, which is the design of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design (Center for Universal Design, 2002), puts forward a potential solution. This paper offers an overview of universal design, including its practice in the museum, formal education, and digital media fields, and
The following document summarizes results from a literature review conducted in Fall 2004 to inform the development of a nationwide research project that will explore universal access to the learning of science, technology, engineering, and mathematics (STEM) in museums. Through this project, the Museum of Science, with four collaborating institutions, will further the industry's knowledge and understanding of ways to create museum exhibitions that are inclusive of the learning needs of all museum visitors, including those with disabilities. Guiding the literature review was a topical
August, 2009 Communities of Effective Practice, 2008-2009 Evaluation Abstract: The Communities of Effective Practice (CEP) project is a National Science Foundation (NSF)-funded project to develop a professional development model for supporting math and science instructional practices that are culturally responsive within American Indian communities. This report summarizes findings from the Year 3 evaluation (conducted during the 2008-2009 academic year) and discusses these findings within the context of the Years 1 and 2 evaluations. It presents key considerations for developing a Community
DATE:
TEAM MEMBERS:
Gina MaghariousKasey McCrackenUtah State University