Framing: Broadening participation and achieving equitable outcomes has been a core goal of the science museum field for over two decades. However, how to make progress has proven an intractable problem.
Methods: Focusing on five organizations who officially committed to diversity, equity, access, and inclusion (DEAI) by participating in a national professional development program, the researchers investigate how science museums attempt to enact internally-focused change via a mixed methods case study.
Findings: While these organizations considered a variety of structurally focused change
Our museum-based participatory research (PR) project was a collaboration between researchers and educators in an out-of-school time STEM education program for young people that positions STEM as a tool for community social justice. This project drew on literatures on reflective practice in museums and on research-practice partnerships. Yet following existing approaches did not work for us. Aligning research and pedagogical practices, we co-created practical, reflective, and practice-based data generation methods, calling them “embedded research practices:” context-specific, emergent methods
This brief focuses on a participatory study with the high school program of the Kitty Andersen Youth Science Center (KAYSC) at the Science Museum of Minnesota (SMM). Young people are organized into teams of up to 20 youth with an adult practitioner who delivers programming based on a STEM content area. Their activities and project-based learning are based in both STEM and social justice, coined in the KAYSC as “STEM Justice.”
As part of our study, we wanted to understand youth and adult needs that exist in an informal STEM education program that weaves equity into its core. This brief
Informal STEM field trip programming is a large, yet under-researched area of the education landscape. Informal STEM education providers are often serving a more privileged section of society, leading to a risk of perpetuating inequalities seen throughout the education landscape. In an attempt to address the lack of research, this thesis explores the relationship between educational equity and informal STEM field trips. The intention was to collect data using a critical ethnography approach to the methods of qualitative questionnaire and interviews of informal STEM educators. A change in
In this article I critically examine the historical context of science education in a natural history museum and its relevance to using museum resources to teach science today. I begin with a discussion of the historical display of race and its relevance to my practice of using the Museum’s resources to teach science. I continue with a critical review of the history of the education department in a natural history museum to demonstrate the historical constitution of current practices of the education department. Using sociocultural constructs around identity formation and transformation, I
In this participatory research project, a partnership between the Kitty Andersen Youth Science Center (KAYSC) and the Department of Evaluation and Research in Learning at the Science Museum of Minnesota, participants are working to rename and reclaim theory and research methods so as to foster relevance and equity. We have renamed the theory of science capital: "science capitxl" signals its roots in equity work and invites questioning. We are using what we have called "embedded research practices" for data generation and analysis. This poster was shared at the 2019 AISL PI meeting.
Abstract: We aim to disrupt the multigenerational cycle of poverty in our rural indigenous (18% Native American and 82% Hispanic) community by training our successful college students to serve as role models in our schools. Poverty has led to low educational aspirations and expectations that plague our entire community. As such, its disruption requires a collective effort from our entire community. Our Collective unites two local public colleges, 3 school systems, 2 libraries, 1 museum, 1 national laboratory and four local organizations devoted to youth development. Together we will focus on raising aspirations and expectations in STEM (Science, Technology, Engineering and Mathematics) topics, for STEM deficiencies among 9th graders place them at risk of dropping out while STEM deficiencies among 11th and 12th graders preclude them from pursuing STEM majors in college and therefore from pursuing well paid STEM careers. We will accomplish this by training, placing, supporting, and assessing the impact of, an indigenous STEM mentor corps of successful undergraduate role models. By changing STEM aspirations and expectations while heightening their own sense of self-efficacy, we expect this corps to replenish itself and so permanently increase the flow of the state's indigenous populations into STEM majors and careers in line with NSF's mission to promote the progress of science while advancing the national health, prosperity and welfare.
Our broader goal is to focus the talents and energies of a diverse collective of community stakeholders on the empowerment of its local college population to address and solve a STEM disparity that bears directly on the community's well-being in a fashion that is generalizable to other marginalized communities. The scope of our project is defined by six tightly coupled new programs: three bringing indigenous STEM mentors to students, one training mentors, one training mentees to value and grow their network of mentors, and one training teachers to partner with us in STEM. The intellectual merit of our project lies not only in its assertion that authentic STEM mentors will exert an outsize influence in their communities while increasing their own sense of self-efficacy, but in the creation and careful application of instruments that assess the factors that determine teens' attitudes, career interests, and behaviors toward a STEM future; and mentors' sense of self development and progress through STEM programs. More precisely, evaluation of the programs has the potential to clarify two important questions about the role of college-age mentors in schools: (1) To what degree is the protege's academic performance and perceived scholastic competence mediated by the mentor's impact on (a) the quality of the protege's parental relationship and (b) the social capital of the allied classroom teacher; (2) To what degree does the quality of the student mentor's relationships with faculty and peers mediate the impact of her serving as mentor on her self-efficacy, academic performance, and leadership skills?
Young people learn about science, technology, engineering, and math (STEM) in a variety of ways and from many sources, including school, the media, personal experiences, and friends and family. Yet STEM participation and identification by youth are not equal across social, economic, and cultural communities. This project will study a long-term, out-of-school program for high school-age youth, who are from groups under-represented in STEM academics and careers: girls, youth from low-income households, and youth of color. Located in the urban context of the Science Museum of Minnesota, the Kitty Andersen Youth Science Center (KAYSC) engages youth in applying culturally rich STEM content to work toward social justice and community building. Specifically, this project will examine how the learning practices of the KAYSC model support youth in identifying with, engaging in, and participating in STEM. Through studying the KAYSC's STEM Justice model, which centers youth as learners, teachers, and leaders who address critical community issues through STEM, this project will develop resources that informal science educators in a variety of contexts and programs can use to promote positive social change, equity, inclusion, and applied STEM learning.
The Science Museum of Minnesota will use design-based implementation research to study this model. This research will draw on and further the emerging theoretical framework of science capital. Science capital attempts to capture multiple aspects of science learning and application, including science knowledge, social and cultural resources, and science-related behaviors and practices. Empirically developing the theory of science capital has the potential to build concrete understanding of how to address inequalities in science participation. Four teams will work independently and collaboratively to do so: an adult research team, a high school youth research team, a practitioner team, and a co-design team composed of representatives from the other three teams. Research teams will collect data in the form of observations, semi-structured interviews, practitioner activity reports, artifacts, and the experience sampling method. Initial cycles of design will occur at the Science Museum of Minnesota as researchers and practitioners document, analyze, and iteratively design learning practices within the STEM Justice model. In the second half of the grant, the team will work with an external out-of-school time youth leadership site to implement the redesigned model. Participatory research and design methods involving both youth and adults can advance understanding of what makes out-of-school time STEM learning meaningful, relevant, and successful for marginalized youth and their communities. Grounded in culturally and socially relevant, community-based resources and programming, this project will study how leveraging STEM out-of-school time learning connected to social justice can broaden access to STEM as well as develop workforce, and leadership, and STEM skills by under-represented youth. The project also builds staff capacity for promoting equity and access in informal learning settings.
This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
This paper, commissioned as part of a consensus study on successful out-of-school STEM learning from the National Research Council's Board on Science Education, explores evidence-based strategies developed in out-of-school time STEM programs for successfully engaging youth from underrepresented demographics in STEM learning.