Skip to main content

Community Repository Search Results

resource project Media and Technology
Purpose: This project team will fully develop and test an open online platform that posts student-led engineering project challenges for Kindergarten to grade 12 classrooms. Research demonstrates that improved attitudes towards engineering in elementary and middle school are imperative to increase the pursuit of STEM degrees and careers. This project intends to address a shortage of tools and curricula in K-12 engineering today, in order to meet the learning objectives new the Next Generation Science Standards and to engage students in STEM.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype, including a content management platform to host challenges on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. At the end of Phase I, researchers completed a pilot study with 100 students and two teachers. Results demonstrated that the prototype operated as intended, that students were highly engaged with challenges on the platform, and that teachers were able to incorporate challenges within instructional practice. In Phase II, the team will refine the landing page, further develop the system architecture to accommodate a larger number of challenges, and upgrade the teacher portal to build capacity for the effective integration into instructional practice. After development is complete, the research team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and promise of the platform to improve learning. The study will include 40 high school classrooms with a minimum of 25 students per class. Half of the classrooms will be randomly assigned to use the platform to conduct a challenge and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of students' science and engineering self-assessments, which measure ability to engage in science and engineering practices such as asking questions, modeling, planning and carrying out investigations, analyzing data, and constructing explanations, as well as content-specific measures depending on the specific challenge with which classes engage.

Product: The project team will develop a platform that will facilitate design challenges in K-12 classrooms across STEM academic topics and career paths within the field of engineering. The platform will enable classes to post their projects to the site and for other classes around the country to participate in the project. Each challenge (and the associated education resources curated for that challenge) will be publicly displayed on the Future Engineers platform and offered free for student participation and classroom facilitation. The content management system will be developed to enable the platform to host a high volume of challenges simultaneously and will allow for a diverse array of student-generated submissions. The platform will also include teacher resources to support the alignment of game play with learning goals and to support implementation.
DATE: -
TEAM MEMBERS: Deanna Belle
resource project Media and Technology
Purpose: This project team will fully develop and test Cyberchase Fractions Quest, a web-based mathematics game for students in grade 3 and 4. Research shows that inadequate understanding of fractions can persist from early grades through higher education, and that success in fractions predicts future success in mathematics and other STEM subjects.

Project Activities: During Phase I (completed in 2016), the team developed a prototype of Cyberchase Fractions Quest, including an interactive number line game with four levels of challenges, and a tool to scaffold learning through hints and provide encouragement as students progress. At the end of Phase I, the research team conducted a pilot study over one week with 60 grade 4 students, half of whom were randomly assigned to use the prototype and half assigned to paper-based fractions activities. Results revealed that the prototype functioned as intended, that students were engaged during gameplay, and that from pre- to post-test, students using the prototype increased significantly in their knowledge of number line problems compared to the control group. In Phase II, the team will finalize the design, artwork, and animation, the formative and summative assessment component, and learning management system. After development is complete, the researchers will carry out a pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the game to improve student learning of fractions over a 5-week period. The study will include four classrooms of grade 3 students, two of which will be randomly assigned, to use the games to supplement in-class lessons while the others will use paper-based activities. The researchers will compare pre-and-post scores for student learning of fractions. The study will also track teacher implementation.

Product: The final product is Cyberchase Fractions Quest—a math game based on the storyline of PBS children's television series, Cyberchase. In the game, students in grades 3 and 4 will apply learning fractions within three contexts: areas and regions (such as shapes), sets (groups of objects), and on a number line. The game will identify specific areas where students struggle and will introduce challenges to support individualized learning. Similar to other popular game apps, student will receive immediate feedback from one to three stars based on how well they perform on each challenge as well as in-game rewards as they progress toward mastery. The game will include teacher resources for classroom implementation, and an educator dashboard presenting results.
DATE: -
TEAM MEMBERS: Gary Goldberger
resource project
This project will advance efforts of the innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.

The project will build a path to further research on best practices for Native American youth education. It will enhance the existing Indigenous Arts and Sciences (IAS) project by addressing cultural perspectives of Native students and educators. The approach describes the need to include ecological relevance in STEM learning for Native American youth, with an integration of Western science with Native knowledge, process, and core values, which will give a positive impact on Native American youth's interest in and learning of science. The project will deliver a culturally relevant stewardship-based education model applying science to indigenous knowledge and community culture connections in collaboration with four tribal communities in Wisconsin. Informal science education will come through the Earth Partnership (EP) and will involve participants in habitat restoration and stewardship as a context for intergenerational science learning across age, discipline, culture and place. EP Indigenous Arts and Sciences (IAS) integrates Western science with Native knowledge, process, and core values including relationship, reciprocity, respect and responsibility.

The project will convene the expertise of elders and community members from Red Cliff, Bad River, Lac du Flambeau, and Ho-Chunk Nations with university social, physical, and life scientists to expand informal science learning incorporating ecological protection and restoration, citizen science, and cultural diversity. STEM learning and career pathways for underrepresented groups will occur in an informal and culturally relevant contexts becoming important for enhancing ecological and STEM literacy, efficacy and civic engagement. IAS will engage students, educators, elders, informal educators, natural resource professionals, and parents in community dialogues and relationship building, informal-formal professional development collaborations, and indigenized STEM learning experiences and mentoring for students in grades 8-12. The science content will be explored through technology-enhanced, project-based learning in real-life contexts integrating culture in classroom and informal settings. This project is based on a growing body of research on Indigenous wisdom that reconnects Native youth and the broader community with the environment. The project occurs broadly at the intersection of science learning, environmental justice, ecological restoration, tribal history, and culture at a crucial time of global climate and social change. IAS will use this project-based learning model to advance the knowledge of how and why indigenizing informal science learning through a collaborative effort including elders, families, youth, formal and informal educators will revitalize culture, community and education.
DATE: -
TEAM MEMBERS: Cheryl Bauer-Armstrong Naomi Tillison Michelle Cloud Delores Gokee-Rindal Brian Gauthier
resource project Media and Technology
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.

Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
DATE: -
resource project Media and Technology
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Alison Young Lila Higgins Lucy Robinson Christothea Herodotou Grant Miller
resource project Public Programs
Science researchers and practitioners are often challenged by how best to assess the effectiveness of science activities on young children whose language skills are still emerging. Yet, research has demonstrated the critical importance of early learning on individual potential. Building on evidence that movement is tightly intertwined with thinking, this project will investigate how thought and movement link as embodied learning to accelerate science understanding. Research will be conducted in the United States (US) and the United Kingdom (UK) with the aim to gather evidence for embodied interactions during science learning and articulate design principles about how museum exhibits can most effectively encourage cognitive and physical engagement with science. Such guidelines are largely absent in the field of informal STEM learning, and so this project seeks transformational change in how learning is understood and recognizes that changes in knowledge can be developed and revealed through body-based movements as well as verbally. Such a view is critically important given that many early learners communicate understanding through nonverbal channels before verbal. Research will be conducted with a diverse population of children and will explore the application of embodied learning to communities that are underrepresented in STEM. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences. During a 3-year period, researcher-practitioner teams across six museum sites will collaboratively investigate the links between movement and learning outcomes at selected science exhibits designed for young learners. Research activities will involve iteration and refinement of new instruments and protocols, through analysis of observed and automated capture of interaction data, and synthesis and interpretation of data. A design-based research methodology will be applied to address three key questions: 1) What elements of sensory and action experiences are key to informing the design of exhibits that aim to exploit embodied interactions for learning; 2) What is the role of bodily enactment /gestures in assessing children's understanding of science concepts; and 3) What cultural differences in kinds of embodied engagement emerge across diverse museum settings? Video and audio data of 400 children's exhibit interactions will be collected. Pre/post semi-structured interviews will be conducted with a subset of these participants and will focus on children's understanding of relevant science concepts as well as personal reflections on their physical and emotional experience engaging with the exhibit. This project would raise awareness of embodied approaches to learning as well as build stronger collaborations between informal STEM educators and cognitive researchers. Utilization of informal and formal dissemination networks will support wide diffusion of project outcomes. This is critically important given strong evidence pointing to the impact of preschool education in underserved populations, and ongoing national efforts by the US and UK to improve the quality of STEM learning in preschool contexts.

Project partners supported by NSF funding include The Phillip and Patricia Frost Museum of Science, University of Illinois Urbana Champaign, The Children's Museum of Indianapolis, andSciencenter (Ithaca).

Partners supported by the Wellcome Trust include University of Edinburgh, University College London, Glasgow Science Centre, Science Museum London, and Learning through Landscapes.
DATE: -
TEAM MEMBERS: Judy Brown H Chad Lane Susan Foutz Andrew Manches Sharon Macnab sara price University of Illinois, Urbana-Champaign The Children's Museum of Indianapolis Cheryl Juarez
resource project Public Programs
One way to encourage youth to pursue training in the STEM fields and enter the STEM workforce is to foster interest and engagement in STEM during adolescence. Informal STEM Learning Sites (ISLS) provide opportunities for building interest and engagement in the STEM fields through a multitude of avenues, including the programming that they provide for youth, particularly teens. Frequently, ISLS provide opportunities to participate in volunteer programs, internships or work, which allow teens both to learn relevant STEM knowledge as well as to share that knowledge with others through opportunities to serve as youth educators. While youth educator programs provide rich contexts for teens to engage as both learners and teachers in these informal STEM environments, research to date has not yet identified the relationship between serving as youth educators and STEM engagement. Thus, the goal of this project is to document the impact of youth educators on visitor learning in ISLS and to identify best practices for implementing youth educator programs. The project studies STEM interests and engagement in the youth participants and the visitors that they interact with at six different ISLS in the US and UK. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This project examines youth educator experiences related to STEM identity, educational aspirations, and motivation. The project also identifies outcomes that the youth educators have on visitors to ISLS in terms of knowledge, interest, and engagement in STEM. The specific aims are: 1) Outcomes for Teens - To measure the longitudinal impact of participation in an extended youth educator experience in an ISLS; 2) Outcomes for Visitors - To compare visitor engagement with and learning from exhibits in ISLS when they interact with a youth educator, relative to outcomes of interacting with an adult educator or no educator; and 3) Outcomes Across Demographics and STEM Sites - To examine differences in visitor engagement based on participant characteristics such as socio-economic status (SES), age, gender, and ethnicity and to compare outcomes of youth educator experiences across different types of ISLS. This research, which draws on expectancy value theory and social cognitive theory, will follow youth participants longitudinally over the course of 5 years and use latent variable analyses to understand the impact on the youth educators as well as the visitors with whom they interact. Importantly, the results of this research will be used to develop best practices for implementing youth educator programs in ISLS and the results will be disseminated to both academic and practice-based communities.

This project has clear and measurable broader impacts in a variety of ways. First, the project provides guidance to improve programming for youth in ISLS, including both the sites involved directly in the research and to the larger community of ISLS through evaluation, development, and dissemination of best practices. Additionally, this project provides rigorous, research-based evidence to identify and describe the outcomes of youth educator programs. This study directly benefits the participants of the research, both the visiting public and the youth educators, through opportunities to engage with science. The findings speak to issues of access and inclusivity in ISLS, providing insight into how to design environments that are welcoming and accessible for diverse groups of learners. Finally, this project provides evidence for best practices for ISLS in developing programs for youth that will lead to interest in and pursuit of STEM careers by members of underrepresented groups.
DATE: -
TEAM MEMBERS: Adam Hartstone-Rose Matthew Irvin Kelly Lynn Mulvey Elizabeth Clemens Lauren Shenfeld Adam Rutland Mark Winterbottom Frances Balkwill Peter McOwan Katie Chambers Stephanie Tyler Lisa Stallard
resource project Public Programs
This 4-year project addresses fundamental equity issues in informal Science, Technology, Engineering and Mathematics (STEM) learning. Access to, and opportunities within informal STEM learning (ISL) remain limited for youth from historically underrepresented backgrounds in both the United States and the United Kingdom. However, there is evidence that ISL experiences can expand opportunities for youth learning and development in STEM, for instance, increase positive attitudes towards educational aspirations and future careers/pursuits, improve grades and test scores in school settings, and decrease disciplinary action and dropout rates. Through research and development, this project brings together researchers and practitioners to focus on the experiences, practices and tools that will support equitable youth pathways into STEM. Working across conceptual frameworks and ISL settings (e.g. science centers, community groups, zoos) and universities in four urban contexts in two different nations, the partnership will produce a coherent knowledge base that strengthens and expands research plus practice partnerships, builds capacity towards transformative research and development, and develops new models and tools in support of equitable pathways into STEM at a global level. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences. This Equity Pathways project responds to three challenges at the intersections of ISL research and practice in the United States and the United Kingdom: 1) lack of shared understanding of how youth from historically underrepresented backgrounds perceive and experience ISL opportunities across national contexts, and the practices and tools needed to support empowered movement through ISL; 2) limited shared understanding and evidence of core high-leverage practices that support such youth in progressing within and across ISL, and 3) limited understanding of how ISL might be equitable and transformative for such youth seeking to develop their own pathways into STEM. The major goal of this Partnership is for practitioners and researchers, working with youth through design-based implementation research, survey and critical ethnography, to develop new understandings of how and under what conditions they participate in ISL over time and across settings, and how they may connect these experiences towards pathways into STEM. The project will result in: 1) New understandings of ISL pathways that are equitable and transformative for youth from historically underrepresented backgrounds; 2) A set of high leverage practices and tools that support equitable and transformative informal science learning pathways (and the agency youth need to make their way through them); and 3) Strengthened and increased professional capacity to broaden participation among youth from historically underrepresented backgrounds in STEM through informal science learning. The project will be carried out by research + practice partnerships in 4 cities: London & Bristol, UK and Lansing, MI & Portland, OR, US, involving university researchers (University College London, Michigan State University, Oregon State University/Institute for Learning Innovation) practitioners in science museums (@Bristol Science Centre, Brent Lodge Park Animal Centre, Impressions 5, Oregon Museum of Science & Industry) and community-based centers (STEMettes, Knowle West Media Centre, Boys & Girls Clubs of Lansing, and Girls, Inc. of the Pacific Northwest).
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Lynn Dierking Carmen Turner Louise Archer emily dawson
resource project Media and Technology
As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE: -
TEAM MEMBERS: Jeyamkondan Subbiah Eric Thompson Deepak Keshwani Richard Koelsch David Rosenbaum
resource project Media and Technology
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.

This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE: -
TEAM MEMBERS: David Watkins Buyung Agusdinata Chelsea Schelly Rachael Shwom Jenni-Louise Evans
resource project Public Programs
This INSPIRE project addresses the issue of high volume hydraulic fracturing, also called fracking, and its effects on ground water resources. Fracking allows drillers to extract natural gas from shale deep within the earth. Methane gas sometimes escapes from shale gas wells and can contaminate water resources or leak into the atmosphere where it contributes to greenhouse gas emissions. Monitoring for these potential leaks is difficult because methane is also released into aquifers naturally, and because monitoring is time- and resource-intensive. Such subsurface leakage may also be relatively rare. This project seeks to improve overall understanding of the impacts of natural gas drilling using both advances in computer science and geoscience, and to teach the public about such impacts. The project will elucidate both the effects of human activities such as shale gas development as well as natural processes which release methane into natural waters. Results of the proposed research will lead to a better understanding of water quality in areas of shale-gas development and will highlight problems and potentially problematic management practices. The research will advance both the fields of geoscience and computer science, will train interdisciplinary graduate students, and involve citizen scientists in collecting data and understanding environmental data analysis.

The project combines new hydro-geochemical strategies and data mining approaches to study the release of methane into streams and ground waters. For example, researchers will explore how to analyze the heterogeneous spatial data that describe distributions of methane concentrations in natural waters. The objectives of this project are to i) transform the ability to measure methane in streams; ii) train citizen scientists to work with project scientists to sample streams in an area of shale-gas development and publish large-volume datasets of methane in natural waters and aquifers; iii) innovate data mining and machine learning methods for environmental data to identify anomalous spots with potential leakage; iv) run field campaigns to measure methane concentrations and isotopic signatures of water samples in these spots; v) foster dialogue among nonscientists, consultants, university scientists, members of the gas industry, government agencies, and nonprofit organizations in and beyond the target region. Toward this end, the team will host workshops aimed to build dialogue among stakeholders and will release data analytic software for environmental measurements to benefit a broader research community.
DATE: -
TEAM MEMBERS: Susan Brantley Zhenhui Li
resource project Media and Technology
Well-designed educational games represent a promising technology for increasing students interest in and learning of STEM topics such as physics. This project will research how to optimally combine and embed dynamic assessment and adaptive learning supports within an engaging game design to build effective educational games. The project will add enhancements to a physics game called Physics Playground. The general goal of this research is to test a valid methodology that can be used in the design of next-generation learning games. The enhancement of Physics Playground will leverage the popularity of video games to capture and sustain student attention and teach physics to a much broader audience than is currently the case in traditional physics classrooms. To be most effective, this new genre of learning games needs to not only be highly engaging as a game but also to provide real-time assessment and feedback to students; support understanding of science content (i.e.,Newtonian physics); be accessible to beginners; accommodate a range of proficiencies and interests; and support equity. The research will have particular relevance to designers developing other science games and simulation by providing information about the kinds of learning supports and feedback to students are most effective in promoting engagement and learning. The project is supported by the Cyberlearning and Future Learning Technologies Program, which funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively.

The project will systematically develop, test, and evaluate ways to integrate engaging, dynamic learning supports in Physics Playground to teach formal conceptual physics competencies. More generally, the project aims to advance the learning sciences, particularly in the fields of adaptivity and assessment in educational technology. Using a design-based research approach spanning three years, the research team will: (1) develop and test the effectiveness of various learning support features included in the game in Year 1; (2) develop and test an adaptive algorithm to manage the progression of difficulty in game levels in Year 2; and (3) test learning supports and adaptive sequencing in a controlled evaluation study. This research will provide evidence of the instructional effectiveness of an educational game designed using principles of instructional, game, and assessment design. It will advance understanding of the contributions of different kinds of learning supports (e.g., visualizations and explanations) and adaptivity to game-based learning and contribute to the design of next-generation learning games that successfully blur the distinction between assessment and learning. The project will generate research findings that can be incorporated into other types of STEM learning games.
DATE: -
TEAM MEMBERS: Valerie Shute Russell Almond Fengfeng Ke