The project team is developing a prototype of Happy Atoms, a game to support middle school students in learning about the composition of molecules. Happy Atoms will include physical manipulative balls with embedded magnets wirelessly connected to a tablet application (app) to recognize whether or not the created molecule exists and explain why or why not. The app will also include teacher resources including instructional videos and curriculum suggestions in order to better integrate the use of the product into classrooms. In the Phase I pilot research, the project team will examine whether the hardware and software prototypes function as planned, teachers are able to integrate it within the classroom environment, and students are engaged with the prototype.
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.
Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE:
-
TEAM MEMBERS:
Karen OberhauserMichele KoomenGillian RoehrigRobert BlairAndrea Lorek Strauss
In this essay, Erica Halverson and Kimberly Sheridan provide the context for research on the maker movement as they consider the emerging role of making in education. The authors describe the theoretical roots of the movement and draw connections to related research on formal and informal education. They present points of tension between making and formal education practices as they come into contact with one another, exploring whether the newness attributed to the maker movement is really all that new and reflecting on its potential pedagogical impacts on teaching and learning.
The independent evaluation firm Multimedia Research conducted an evaluation of the television component of SciGirls Season Two, including an experimental study of the impact of the TV series on girls' abilities to take part in science and engineering projects.2 During the same period, the independent evaluation team from Knight Williams Inc. conducted an evaluation of the implementation of the outreach activities among the member institutions of the National Girls Collaborative Project (NGCP) network.
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?
The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.
The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
Design-based research (DBR) is used to study learning in environments that are designed and systematically changed by the researcher. DBR is not a fixed “cookbook” method; it is a collection of approaches that involve a commitment to studying activity in naturalistic settings, many of which are designed and systematically changed by the researcher, with the goal of advancing theory at the same time directly impacting practice. The goal of DBR (sometimes also referred to as design experiments) is to use the close study of learning as it unfolds within a naturalistic context that contains
DATE:
TEAM MEMBERS:
Sasha Barab
resourceresearchProfessional Development, Conferences, and Networks
Design research is strongly associated with the learning sciences community, and in the 2 decades since its conception it has become broadly accepted. Yet within and without the learning sciences there remains confusion about how to do design research, with most scholarship on the approach describing what it is rather than how to do it. This article describes a technique for mapping conjectures through a learning environment design, distinguishing conjectures about how the design should function from theoretical conjectures that explain how that function produces intended outcomes.
DATE:
TEAM MEMBERS:
William Sandoval
resourceprojectProfessional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE:
-
TEAM MEMBERS:
Mitchell WayneRandal RuchtiDaniel Karmgard
Large-scale assessments like PISA are highly influential in policymaking, but they don’t tell us anything about the nature of student learning underpinning the scores. In this study, an additional instrument was administered to students in Finland, Germany, and Switzerland. Finnish students, who score higher on PISA, also scored higher on the second assessment. Findings suggest that Finnish students may have developed more complex knowledge bases in science.
Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.
Developing the ability to read and critically assess science-themed media reports is of great importance, given the media’s pervasive and powerful influence on people’s beliefs and behaviours. This study examines a technique designed to develop high school students’ critical reading abilities. Findings suggest a progression from blind belief toward the ability to draw conclusions based on scientific information.
Great Lakes Science Center (GLSC), home of the NASA Glenn Visitor Center, is dedicated to sharing NASA content to inform, engage, and inspire students, educators, and the public. To further this goal, GLSC will develop a digital experience focused on collaboration and teamwork, emphasizing the benefits of a systems approach to STEM challenges. At the recently, fully renovated NASA Glenn Visitor Center, GLSC visitors will embark on an exciting mission of discovery, working in teams to collect real data from NASA objects and experiences. Mobile devices will become scientific tools as students, teachers, and families take measurements, access interviews with NASA scientists, analyze results from Glenn Research Center (GRC) test facilities, and link to NASA resources to assemble mission-critical information. This initiative will provide experiences that demonstrate how knowledge and practice can be intertwined, a concept at the core of the Next Generation Science Standards. GLSC’s digital missions will engage students and families in STEM topics through the excitement of space exploration. In addition, this project has the potential to inform the design of future networked visitor experiences in science centers, museums and other visitor attractions.