The Exploratorium comes together with the Education Development Center, Inverness Research, TERC, the University of Colorado - Boulder, and the University of Washington to form a Research+Practice (R+P) Collaboratory. The Collaboratory seeks to address and reframe the gap between research and practice in K-12 STEM education. This gap persists despite decades of work by many leading organizations, associations, and individuals. Attempts to close the gap have generally focused on creating resources and mechanisms that first explain or illustrate "what research says" and then invite educators to access and integrate findings into practice. Recently, however, attention has turned to the ways in which the medical sciences are addressing the gap between research and clinical practice through the developing field of "translational research." In medicine, the strategy has been to shift the focus from adoption to adaptation of research into practice. Implicit in the notion of adaptation is a bi-directional process of cultural exchange in which both researchers and practitioners come to understand how the knowledge products of each field can strengthen the professional activities in the other. Along these lines, the R+P Collaboratory is working with leading professional associations and STEM improvement efforts to leverage their existing knowledge and experience and to build sustainable strategies for closing the gap. The R+P Collaboratory is developing an online 'Go-To' Resource Center website that houses the resources collected, created, and curated by the Collaboratory. The Resource Center also has significant 'Take-Out' features, with all materials meta-tagged so that they can be automatically uploaded, reformatted, and integrated into the existing communication and professional development mechanisms (e.g., newsletters, digests, conferences, and websites) of a dozen leading professional associations within a Professional Association Partner Network. In light of new and emerging standards in the STEM disciplines, the Collaboratory is focusing its work on four salient and timely bodies of research: (a) STEM Practices, (b) Formative Assessment, (c) Cyberlearning, and (d) Learning as a Cross-Setting Phenomenon. Special emphasis is being placed on research and practice that focuses on the learning of children and youth from communities historically underrepresented in STEM fields.
The objective of this project is to extend the concept of crowdsourcing in citizen science to the interaction design of the organization as well as to data collection. Distributed technologies offer new opportunities for conducting scientific research on a larger scale than ever before by enabling distributed collaboration. Virtual organizations that use distributed technologies in scientific organizations have primarily focused on how dedicated, professional scientists collaborate and communicate. More recently a rapidly increasing number of citizen science virtual organizations are being formed. Citizen scientists participate in scientific endeavors and typically lack formal credentials, do not hold professional positions in scientific institutions, and bring diversity of knowledge and expertise to projects and challenges. They participate in scientific endeavors related to their personal scientific interests and create new challenges for the design of virtual organizations. In terms of intellectual merit, the project will make three specific contributions: a new interaction design for collecting biodiversity data within a nature park, a model for crowdsourcing the design of an social computing approach to citizen science, and an analysis of the impact of crowdsourcing the design on motivating participation in collecting biodiversity data. Interactive tabletop computers will be placed in two nature parks so that the design of the citizen science environment can be embedded in a park experience and engage the public in understanding more about their parks, in data collection, and develop a personal commitment to environmental sustainability issues. In terms of broader impacts, the project provides three types of impact: research training by including graduate students, broad public dissemination to enhance scientific understanding of biodiversity, and benefits to society through association with the Aspen Center for Environmental Studies (ACES) and Encyclopedia of Life (EOL).
DATE:
-
TEAM MEMBERS:
Mary Lou MaherTom YehJennifer Preece
Recent biomedical research has transformed scientific understanding of human biology. But many of these advances haven’t filtered into public awareness, hindering our ability to make good health-related decisions. A new educational program ‒ Biology of Human ‒ will help the public, particularly young people, better understand advances in biomedical research. This innovative, learning research-based science education program is strategically designed to increase awareness of and understanding about new biomedical research developments pertaining to human biology. Biology of Human will provide a sophisticated science education outreach package for students aged 11 to 15 and adults, including parents and educators. The project's goal is to leverage the latest biomedical information and innovations, a dynamic suite of educational and dissemination strategies, and research-driven approach grounded in sociology to broadly educate youth and adults about human biology. A team led by the University of Nebraska State Museum, the Department of Sociology at the University of Nebraska-Lincoln, and the NIH/NCRR-funded Nebraska Center for Virology (a Center of Biomedical Research Excellence) will work with science writers, kids, and educators to complete three specific aims: 1) stimulate interest in and understanding of biomedical research's importance to diverse individuals' health, communities, and environments; 2) establish partnerships among science educators, biomedical researchers, science journalists, and others to create dynamic educational resources focused on biomedical research developments and human biology; and 3) increase youths' interest in biomedical science. Biology of Human will provide adults and youth with several simultaneous, complementary options for learning about how biomedical research has helped us understand human biology including essays, books and blogs; entertaining and scientifically accurate mobile and tablet apps; activities and graphic stories; and a Web site that complements and supports the project's professional development programs. More than 175,000 youth and adults are expected to be directly impacted through this effort.
Sustainable Nano is the a blog created and written by scientists at the Center for Sustainable Nanotechnology, a research center located primarily at universities in the midwest that seeks to advance technological innovations that are safe and sustainable by discovering molecular principles that govern nanoparticle-biological interactions, preparing a new and diverse generation of trans-disciplinary scientists, and engaging the general public.
Several major international studies recognize that children (and adults) pursue lifelong STEM interests and understandings, in and out of school, using a variety of community resources and networks. In most communities though, these resources are not well connected with one another, nor is there understanding on the ground of how children and adults can best access and use these resources to support their lifelong STEM interests and learning. The SYNERGIES project is predicated on the assumption that better understanding how 10-14 year old youth become interested and engaged with STEM (or not) across settings, time and space, will make possible a more coordinated network of educational opportunities, involving many partners in and out of school, and in the process, create a community-wide, research-based educational system that is more effective and synergistic. Using the under-resourced Parkrose community of Portland, Oregon as a case-study, the SYNERGIES team has been longitudinally studying the STEM interest and participation pathways of 200 youth for four years. Data from this investigation formed the foundation for a community-wide, multi-year STEM education improvement plan jointly developed by the schools, after-school providers, museums, libraries, parks, colleges, parents and businesses.
The LTER Network is an innovative platform for training the next generation of natural scientists in collaborative, integrative, long-term research in ecology. An important objective of the network is to share knowledge with other communities. The LTER Network Office addresses this objective by managing a Communication and Outreach program that targets key communities—scientists, policy makers, educators and students, and the mass media as a proxy of the rest of the non-specific audiences—and maintain strategic partnerships and collaborations that provide improved access to these communities.
This proposed four-year effort envisions a new approach to promoting science literacy through science journalism as a subject of study. It is premised on a critical set of assumptions: (a) Most citizens have the need to interpret scientific information found in popular media (e.g., newspapers, magazines, online resources, science-related television programs); (b) science journalism provides reliable, well-researched science information; (c) authentic science writing provides motivation to learn; and (d) standards and rubrics specifically developed for evaluating students' science-related expository text do not exist. Thus, the project approaches science journalism as a means to assist students to investigate and coherently write about contemporary science and to learn to base assertions and descriptions on reliable, publicly available sources. To this end, the project aims to develop, pilot, and evaluate a model of instruction that focuses on the following aspects: (a) Identifying questions of both personal and public interest; (b) evaluating contemporary science-related issues; (c) making available highly regarded sources of information as exemplars (in-print, online, interviews); (d) synthesizing information; (e) assessing information based on fact-checking using the five Ws (who, what, where, when, and why); and (f) coherently explaining claims and evidence. A hypothesis and a set of research questions guide this effort. The hypothesis is the following: If participating students successfully attain the fundamental elements of the proposed model, then they will become more literate and better critical consumers and producers of scientific information. The main guiding research question of the proposed activity is the following: Does the teaching of science journalism using an apprenticeship model, reliable data sources, and science-specific writing standards improve high school students' understanding of science-related public literacy? Secondary questions include (a) Is the teaching of science journalism an efficacious, replicable and sustainable model for improving science literacy?; (b) How useful are science-related standards and rubrics for scaffolding and evaluating students' science writing and science literacy?; and (c) What is the nature of the engagement in science that this apprenticeship invites?
DATE:
-
TEAM MEMBERS:
Alan NewmanJoseph PolmanE. Wendy SaulCathy FarrarAlan Newman
"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "
The mission of QESST public outreach is to provide a platform for engaging the community; students, parents, teachers, and the general public; in discussions about solar energy. Although there is a growing interest in advances of solar energy, many misconceptions prevail amongst the general community. Community outreach serves as a mechanism for engaging people and drawing them in. It is often the hook that creates interest in parents who pass that interest onto their children, or lures young students into more formalized QESST programs. Our outreach events range in scale from small workshops, large university wide open houses, and participation in educational television.
The Rochester Museum & Science Center (RMSC) requests funding to complete initial plans for Innovation Place (working title), a major new 10,000 sq. ft. exhibition in RMSC’s third floor galleries that promotes understanding of Rochester’s technological history and its culture of invention and innovation. Collections objects, immersive environments, multimedia presentations, and interactives will be used to tell stories of invention and innovation from Rochester’s beginnings as the nation’s first boomtown after the opening of the Erie Canal to its current rank among the top knowledge-based economies in the world. By combining the sciences and the humanities into a single exhibition, this project will critically frame and interpret new questions about Rochester as a laboratory of significant technologies – on the local, national, and global levels – and the changes in regional culture and economics that both inspire, and result from, their invention.
THE DUST BOWL is a 2-part, 4-hour documentary film series that will explore a decade-long natural catastrophe of Biblical proportions and the worst man-made ecological disaster in American history, a collective tragedy that nearly swept away the breadbasket of the nation. The series will be broadcast nationally in prime time on PBS in 2012, and will be accompanied by extensive educational outreach materials and a major promotional campaign to drive tune-in. In addition a web site will be created for the film to be housed on pbs.org.
The Kitchen Sisters will support the production of Hidden Kitchens World, a new multimedia series that explores life and culture through food across the globe. Inspired by the original NEH-funded NPR Hidden Kitchens series, this new on-air and online collaboration will feature stories exploring what people eat and grow, how food marks our sameness and differences, and how food culture adapts in the face of globalization, socioeconomic conditions and environmental changes. Each story will include perspectives from scholars, as well as video, music, photographs, curriculum and links to a curated library of resources relating to the themes raised within the stories. Funding from the NEH will help produce a multi-faced project featuring 8 stories on NPR, 1 hour-long radio specials distributed nationwide, 8 podcasts, research and development of a smart phone app, and a collaborative, humanities-rich website with audio, video, recipes, images and writings from around the world.