Skip to main content

Community Repository Search Results

resource project Public Programs
The Lewis H. Latimer House Museum will develop a more cohesive education program that reflects both the museum's resources and the needs of local schools. The museum's deputy director and Tinkering Lab educator will work together to design a curriculum that meets current New York State and city standards, enabling the museum to more effectively serve schools in the community with object-based learning experiences. Packets of educational materials will be developed and made available for school teachers to download and use in their classrooms prior to and following visits to the museum. Target schools will be actively involved in the process of testing and utilizing the products. Project results will be shared with internal and external stakeholders to sustain long-term improvement and enhance institutional capacity.
DATE: -
TEAM MEMBERS: Ran Yan
resource project Public Programs
The Hands On Children's Museum will build on two of its most distinctive features-an Outdoor Discovery Center and a Young Makers program-to create a Nature Makers program. The interdisciplinary project will link nature-based learning with maker activities that use natural materials. Partnerships with Native American tribes, scientists, maker groups, and others will enrich the staff-led offerings. Nature Makers addresses two of the most significant needs in early learning-inspiring early STEM education and connecting children with the outdoors. Nature Makers will increase children's exposure to outdoor tinkering to build the foundation for STEM success in school; educate parents, caregivers, and teachers about the important role outdoor exploration plays in STEM achievement; and stimulate children's curiosity about the natural world and increase the time they spend outside. Evaluation findings will be shared internally to inform continuous improvement of program offerings, and externally to serve as a model for outdoor making activities.
DATE: -
TEAM MEMBERS: Amanda Wilkening
resource project Public Programs
The Clubhouse Network: A Global Community for Creativity and Achievement, a program of Boston's Museum of Science, will develop, pilot, and evaluate Light it Up! Engaging Young People in Digital Making Activities. Digital making activities combine design, computational thinking, and engineering practices that are all fundamental learning skills for the 21st century. Over the course of six months, the project team will develop a one-day, hands-on workshop that will give museum educators strategies to inspire a more diverse population of middle and high school-aged youth to consider educational and career pathways in STEM fields through engagement with local science centers. The workshop will be implemented twice with a group of 12 educators from regional museums. The museum will use tested evaluation tools to improve the quality and outcomes of the workshops. A successful prototype and evaluation will result in practices that can be adapted by other museums and cultural institutions to better reach young people with digital making activities.
DATE: -
TEAM MEMBERS: Gail Breslow
resource project Public Programs
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.

The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.

A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.

Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
DATE: -
TEAM MEMBERS: Anja Scholze
resource project Public Programs
This exploratory learning research and design project will study how to use emerging technologies to help document practices in maker-based learning experiences. Despite its established potential for consolidating learning and sense-making, project documentation is often overlooked, not prioritized or seen as burdensome and therefore not integrated into the learning experiences. The project team seeks to understand and address with practice partners the barriers to documentation by systematically exploring how to physically embed and incorporate smart tools and documentation practices into learning environments, specifically creative hands-on learning spaces, like makerspaces. The goal is to understand how to scaffold learners to become more aware, reflective and attentive to their progress towards learning outcomes by embedding supportive tools physically in space as the actions unfold. Making and maker-based learning experiences offer tremendous opportunities to more fully engage diverse learners in STEM education and build a workforce prepared for innovation. Documentation of these learning experiences, both as an authentic practice that professionals engage in as well as an assessment practice for instruction, is often not supported. The project will create open source documentation for solutions and develop supporting case studies, web resources and guides to facilitate easy uptake and adoption of promising approaches.

This proposal will make significant research contributions in three ways: (1) develop and iteratively test a suite of embedded "smart" tools designed to scaffold, manage and trace process documentation practices; (2) study the integration of these tools in formal and informal activities and programs settings and characterize their influence on instruction and the assessment of learning outcomes; (3) establish a set of rubrics based on learner data streams to aid instruction and mark learner progress. Improving documentation practices and the assessment of learning outcomes will advance making as a core STEM educational activity. Through a better understanding of why and how to place networked documentation tools sensitive to space, time and context cues, the threshold for enactment and scaffolded usage can be lowered in a broader range of settings. Ultimately, this exploratory project will not only develop an integrated set of situated documentation tools, but also help us develop hypotheses for how documentation as a mediating process productively supports learning.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The Multimedia Immersion (MI) project is will develop, pilot, and evaluate a nine-week STEM-rich multimedia production course for high school students. MI will make important contributions to the field through its efforts to design and evaluate the promises and challenges of a nine-week multimedia curriculum in multiple urban high schools. The MI course will engage teams of students to develop a personally and socially relevant storyline that guides their use of accessible audio and video technologies to create a five-minute animated video. To develop student STEM experience and provide technical support, the project will provide guidance and learning experiences in engineering (e.g., criteria, constraints, optimization, tradeoffs), science (e.g. sound, light, energy, mechanics) and multimedia technologies (e.g., computer based audio production, video editing and visualizations through animatics (i.e., shooting a succession of storyboards with a soundtrack). animatics).

Because the curriculum situates engineering and science learning in the context of multimedia production, there are natural synergies with several existing high school courses including engineering design, audio/video media production, and multimedia technology. Although these courses are typically electives in high school, developing a 5-minute animated short on a topic of interest may encourage girls and students from underrepresented groups to select this course over other electives. MI will impact 10 teachers and approximately 250 high school students per year. The project will result in the following resources: nine-week curricular unit (multimedia, science, engineering); assessments to monitor student learning of science, engineering and technology (design logs); and research on changes in student knowledge, interest, and a nine-week curricular unit (multimedia, science, engineering). Project resources will be disseminated to teachers, researchers, and curriculum and professional development providers via conference presentations, publications, and online webinars.

The MI project builds on student familiarity and interest in music, video and technology to promote an: (1) understanding of engineering design and physics and an (2) an appreciation of the fundamental role of STEM in popular culture. Project evaluation will be conducted using student surveys and an examination of work products in conjunction with implementation challenges and successes to generate evidence for the feasibility and utility of a high school multimedia course that explicitly addresses science and engineering learning. Project evaluation will use student design logs as a window into student design processes and conceptual understanding. Student design logs are an essential feature of MI curriculum design. With an appropriate structure, these design logs can inform teaching, afford an opportunity for students to reflect on their own work, and provide evidence of student thinking and learning for assessment purposes. Using student design logs as a window into students? design process and conceptual understanding is an important contribution to the engineering education community which has few options for measuring student knowledge in ways that are consistent with the hands-on, iterative nature of the design process.
DATE: -
TEAM MEMBERS: Marti Louw Daragh Byrne Kevin Crowley
resource project Public Programs
Brokering Youth Pathways was created to share tools and techniques around the youth development practice of “brokering” or connecting youth to future learning opportunities and resources.

This toolkit shares ways in which various out-of-school educators and professionals have approached the challenge of brokering. It provides a framework, practice briefs and reports that focus on a particular issue or challenge and provide concrete examples, as well as illustrate how project partners partners worked through designing new brokering routines in partnership with a research team.
DATE: -
resource project Afterschool Programs
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).

Coordinator: National Museum of Science and Technology Leonardo da Vinci

Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource project Making and Tinkering Programs
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.

ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE: -
TEAM MEMBERS: Shaik Jeelani Bruce Crawford Mohammed Qazi Jeffrey Gray Jacqueline Brooks
resource project Public Programs
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of Making have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. WestEd, in collaboration with the Lucile Packard Children's Hospital, the University of Michigan C. S. Mott Hospital Children's Hospital, and the Children's Hospital of Orange County, is conducting a year-long exploratory research study that will focus on the out-of-school learning by adolescents and young adults in children's hospitals. This research study will focus on mobile and dedicated Makerspaces in hospitals to support patients' learning. The application of Makerspaces to hospital environments is a unique opportunity to research a critical need of chronically ill individuals, i.e. to explore how Making can enhance patients' agency, creative STEM learning, and physical well-being. The proposed study is building on the prior work of the principal investigator and will: (1) examine the nature and processes of learning in children's hospitals; (2) revise the current design of the mobile Makerspace and the associated implementation model in response to variations in programmatic contexts across multiple hospital settings and disparate patients' conditions; and (3) investigate and test the effectiveness of the Makerspace approach as it relates to both patients' learning and health outcomes. The study would contribute to longer-term efforts to develop a comprehensive, scalable, and sustainable strategy to determine the programmatic viability of the mobile Makerspace approach across a more varied array of hospital settings. This project has the potential to have a much broader impact by reaching out to other isolated students beyond the hospital environment, including those in residential treatment facilities for behavioral and emotional problems, as well as those attending programs designed to help youth who have been in trouble with the law get back on track. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project's goals are to contribute to the understanding of how to: (1) describe and measure the education and health impact of mobile Makerspaces on chronically ill patients, and (2) design and sustain implementation models in various hospital settings. Since a children's hospital is a challenging context to support a patient's learning, it is not typically conducive to learning. Patients are constantly interrupted by the demands of the illness, by the strict protocols that need to be adhered to, and by the medical staff who manage their exhaustive treatment regimens. The mobile Makerspace is intended to adjust the environment in deliberate ways, allowing researchers to study and observe what kinds of learning intervention models enable youth and young adults to recapture a sense of their own agency and enable them to see themselves as creators, and makers of things that improve their own and others' lives. The project will have two strands: one on learning and one on adaptation of the model. In the learning strand, the study will investigate how engaging with the Makerspace can enhance patients' learning by provoking their sense of curiosity, encouraging them to set up and pursue personal goals via invention, and inspiring them to feel more agentive in taking charge of their learning process i.e., development of affinity for and fluency in the ways of knowing, doing and being (the epistemologies and ontologies) of engineers or scientists. In the adaptation strand, they will identify challenges and opportunities for implementing Makerspaces and develop an implementation plan that provides a process for introducing Makerspaces into hospital settings.
DATE: -
TEAM MEMBERS: Gokul Krishnan Steven Schneider
resource project Public Programs
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of "making" have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. As part of a larger, long-range initiative in their local community, the New York Hall of Science proposes to leverage the philosophy and activities of the Maker movement to take important first steps toward realizing their eventual goal of developing family and community-wide commitment to and improvement of STEM education. The project would build both foundational and practical knowledge about how parents with little or no prior knowledge of or experience with Making choose to engage with, contribute to, and learn from Maker programming designed for families with children from low-income households and backgrounds that are under-represented in the STEM professions. The intent is to build their understanding of the value of Making as a pathway toward deeper STEM learning. The project is characterized as "high-risk with potentially high-payoff." It applies a community psychology approach (rather than individual psychology) to the study of Making, and it focuses on parents as potential learners and leaders. While some work has been done in the field with respect to the role of parents in Maker environments, this is a new approach to the study of Making and its potential influence on the broader culture of STEM learning in a community. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Two informal learning environments will be developed and studied at the New York Hall of Science: Learning Together, a table-top, minimally staff-facilitated setting in the Hall's science library, and Family Making, a high-tech and staff-facilitated experience in the Hall's maker facility. The study poses two research questions: (1) How, and to what extent, do the Learning Together and Family Making programs attract and sustain parental engagement, parental facilitation of children's activity, and parents' own explorations of Making? (2) From a community psychology perspective, what social structures, resources, social processes, and surrounding institutional conditions support or impede these parental pathways into exploring and understanding Making as a pathway toward STEM learning? The study will involve sustained collaborations between the Hall's Maker Space staff and research team, and will seek to generate guidance about how to design Maker programming that attracts and retains low-income, under-served family groups and new knowledge about how external structures and practices shape this audiences' perceptions of and interest in Making as a mode of STEM learning.
DATE: -
TEAM MEMBERS: Katherine McMillan David Wells Susan Letourneau
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton Edna Tan
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project plans to deliver and improve a constructivist professional development (PD) program called Remake Making for library staff that work with youth in maker spaces. The proposed project will be led by a team at the University of Pittsburgh and builds on a pilot facilitation framework developed in an earlier project by this team. The PD program responds to the rapid growth of makerspaces with a constructivist PD program focused on facilitation. Maker spaces are a new service model in many public libraries, part of a broader shift in general library services. Effective facilitation for learning, like that required in makerspaces, is a relatively new facet of librarianship that is not a consistent part of librarian education or PD. The project will work with two local library systems with libraries that have makerspaces but little to no PD opportunities around facilitation. The project plans to iteratively design and investigate the Remake Making program, its impact on library maker facilitators and their interactions with child and youth learners. This will provide a setting for preliminary research about constructivist PD and the experiences and struggles of staff who facilitate making in libraries within the context of shifting library norms. This project will produce an efficient, maker-friendly PD system for facilitation in makerspaces, applicable to a broad range of informal and formal educators who wish to incorporate facilitated making.

The project plans to conduct an iterative development process involving several cohorts of participants and using multiple data sources which include embedded PD workshop data, participant pre-post surveys, observation of library makerspaces, and interviews/focus groups. A participatory approach will be employed by involving participants in creating and refining research questions within the scope of the project. This approach is designed around inquiry-based improvement, which is experienced by participants as reflective practice or continuous improvement. The proposed project aims to advance knowledge and PD strategies for facilitation in library makerspaces. The research will build knowledge about the efficacy of an innovative constructivist PD program with adaptation as a key feature. The data collected in the context of the development of this innovation will provide opportunities for applied research about informal STEM learning in the context of library maker spaces, and the role that library staff play in facilitating this type of learning.
DATE: -