Although there is a growing body of research on mathematics in informal learning environments (Pattison, Rubin, & Wright, 2016; Rubin, Garibay, & Pattison, 2016), less has been done to understand how math can be integrated into other informal STEM education settings or topics, and how this integration might engage those who do not already have positive attitudes about math. Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities (Bevan, Gutwill, Petrich, & Wilkinson, 2015; Vossoughi, Escudé, Kong, & Hooper
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project will provide much needed empirical results on how to promote children’s STEM engagement and learning in informal science education settings. The project will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Makerspaces are social spaces with tools, where individuals and groups conceptualize, design, and make things using new and old technologies. Literacy practices are the ways people use representational texts to navigate and make sense of their worlds. They are used in particular contexts with particular goals. By “representational texts” we mean written words, talk, photographs, diagrams, videos, schematics, computer code, electrical circuit diagrams
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
This pathways project will design, develop and test Do-It-Yourself, (DIY), hands-on workshops to introduce and teach middle school females in underserved Latino communities computing and design by customizing and repurposing e-waste media technology, such as old cell phones or appliances -- items found in the students homes or neighborhoods. The major outcome of the project will be the creation of a workshop kit that covers the processes of DIY electronics learning taking place in the workshops for distribution of the curriculum to after school programs and other informal science venues. The PIs have implemented three pilot projects over the last three years that demonstrate the ability of hands-on DIY electronics curricula to motivate and encourage students and to enable them to acquire a deeper understanding of core engineering, mathematics and science concepts. This project would extend the approach to underserved Latino youth, particular girls of middle school age. This audience was identified because of the historically low rate of participation in STEM fields by people in this group and the particular challenges that females have in acquiring knowledge in technical STEM areas. The proposal suggests that the approach of using hands-on workshops that rely on low technical requirements -- essentially obsolete or discarded electronic equipment, primarily from homes of participants -- will encourage the target audience to experiment with items they are familiar with and that are culturally relevant. The hypothesis of the project is that this approach will lower barriers to experimenting with "circuit bending" - the hand-modifying of battery-powered children's toys to build custom electronic instruments and lead to greater participation and success of females in the target group. The project will provide free workshops in two neighborhood locations and be supported by undergraduate student mentors and volunteers and staff of two community groups that are part of the project, Machine Project and Girls, Inc. Participants will demonstrate the finished projects to the workshop group, mentors and parents. Each participant will receive a copy of the workshop handbook in both English and Spanish to take home so that parents, members of the community and caregivers can supervise and participate in future projects.
DATE:
-
TEAM MEMBERS:
Garnet HertzGillian HayesRebecca Black
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately few youth from under-represented populations have had the opportunity to participate in these maker spaces. This proof-of-concept project, a collaboration of faculty from Michigan State University and the University of North Carolina, Greensboro with staff of the Boys and Girls Clubs in Lansing and Greensboro, will address two challenges faced by middle school youth from backgrounds underrepresented in engineering professions: 1) a lack of opportunities to learn engineering meaningfully and to apply it to understanding and solving real-world problems (i.e. learning), and 2) few experiences that foster the ability to see oneself as an important, contributing producer and consumer of engineering (i.e. identity). The team will develop and study an informal (out-of-school) STEM learning model to engage middle school youth from underrepresented backgrounds in experiences related to engineering-for-sustainable-communities. The model engages youth both in maker spaces and in conducting community ethnography studies to identify local problems and then to design potential solutions for them. The participants will also be connected into a broader social network of experts. Using a design-based research approach and applying social practice theory and systems theory, the work will identify how critical aspects of the learning environment shape identity work. This will yield information on the value and affect of the instructional tools that will be produced. The team hypothesizes that, by alternating over time between maker spaces activities and community ethnography studies, youth will a) reflect upon what they know and need to know to define problems and design solutions, b) develop stronger engineering identities, and c) realize the potential they have to make change in their community. Professionals in education and engineering will benefit from additional empirical evidence for how identity unfolds over time, across learning contexts, and how it promotes opportunities to learn in engineering.
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately, few youth from under-represented populations have had the opportunity to participate in these maker spaces, and many communities do not have the resources to establish facilities dedicated to making activities. This project, a collaboration of faculty at California State University, San Marcos and San Diego County Office of Education, the Vista Unified School District, and the San Diego Fab Lab, is a feasibility study that will work to address these needs by implementing and evaluating a pilot Mobile Making program in an underserved youth population. It will bring Making to four after-school programs in underserved communities in San Diego by using a van to take both equipment and undergraduate student mentors to program sites. At these sites, between 50% and 90% of the students are Hispanic or Latino and between 40% and 90% are eligible for free or reduced price lunch. The project employs a research-based approach to the design and implementation of the Mobile Making program, coupled with an evidenced-based plan for developing a model for future dissemination. Project objectives are: increasing the participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life; identifying and overcoming challenges associated with a Mobile Making program; developing a model for implementing and assessing Mobile Making in underserved communities; and disseminating materials and guides for practitioners. Development will be guided by five research-based principles for design of out-of-school time programs in underserved communities: access to resources; ethnically diverse near-peer leaders; authentic activities; legitimacy within the community; and ongoing input from participants. To inform program development and implementation, including continuous monitoring and adjustment throughout the two-year initiative, the evaluation component will use a mixed methods approach to study outcomes with respect to the students, their parents and the undergraduate mentors. Future work will apply the lessons learned in the project to guide implementations and study the model's applicability in other informal education settings. The dissemination plan will include publication of project findings, activities, practitioner's guides, and the model for implementing making programs in underserved communities.
This poster was presented at the 2014 AISL PI Meeting. It describes a project that uses location-based augmented reality games on smartphones to engage youth in activities developed by informal science institutions.
DATE:
TEAM MEMBERS:
Missouri Botanical GardenBob Coulter
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell