This IMLS-funded study sought to examine the impact of educator-facilitation on engineering attitudes and self-efficacy of children in Design Challenges activities. Using a quasi-experimental design with statistically comparable pre- and post-experience groups, researchers collected observation, interview, and survey data to address the following research questions:
1. Do visitors’ perceptions of engineering activities improve as a result of the facilitated Design Challenges experience?
2. What aspects of the interactions between museum educators and Design Challenges visitors contribute
In this article, science center and museum professionals from around the world share ways that they are engaging visitors in hands-on innovation. Work from the following organizations are discussed: Exploratorium, Discovery Center of Idaho, Lawrence Hall of Science, Iridescent, Conner Prairie Interactive History Park, Ideum, Discovery Place, Ontario Science Centre, Bootheel Youth Museum, Science Centre Singapore, Children's Museum of Phoenix, Discovery Museums (Acton, MA), Discovery Center of Springfield, Missouri, Museum of Science, Boston, Questacon--The National Science and Technology
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
The Balboa Park Cultural Partnership, in collaboration with several informal science education and other cultural and business organizations in San Diego, Chicago, and Worcester, MA are implementing a research and development project that investigates a range of possible approaches for stimulating the development of 21st Century creativity skills and innovative processes at the interface between informal STEM learning and methods for creative thinking. The goal of the research is to advance understanding of the potential impacts of creative thinking methods on the public's understanding of and engagement with STEM, with a focus on 21st Century workforce skills of teens and adults. The goal of the project's development activities is to experiment with a variety of "innovation incubator" models in cities around the country. Modeled on business "incubators" or "accelerators" that are designed to foster and accelerate innovation and creativity, these STEM incubators generate collaborations of different professionals and the public around STEM education and other STEM-related topics of local interest that can be explored with the help of creative learning methodologies such as innovative methods to generate creative ideas, ideas for transforming one STEM idea to others, drawing on visual and graphical ideas, improvisation, narrative writing, and the process of using innovative visual displays of information for creating visual roadmaps. Hosting the project's incubators are the Balboa Park Cultural Partnership (San Diego), the Museum of Science and Industry (Chicago) and the EcoTarium (Worcester, MA). National partners are the Association of Science-Technology Centers, the American Association for the Advancement of Science, and the Americans for the Arts. Activities will include: the formation and collaborative processes of three incubator sites, a research study, the development of a creative thinking curriculum infused into science education, professional development based on the curriculum, public engagement events and exhibits, a project website and tools for social networking, and project evaluation. A national advisory council includes professionals in education, science, creativity, and business.
This CRPA award demonstrates to the public the unique use of nanoscience in Nature. The Blue Morpho butterfly is large, has blue wings and is eye catching to say the least. Its wings have been shown to exhibit interesting color characteristics under varying conditions. These characteristics and uniqueness are due to nano-molecules that are a chemical construction in the wing structure. Thus, this butterfly is the hook and segues into a discussion of nanoscience and crystal structures in Nature. Furthermore, the exhibit which is referred to as a flex-hibit is small and portable facilitating its use in out-of-museum demonstrations at public events and in rural areas. This is a colorful demonstration that is quick, interesting and reversible so audiences can be entertained for a short 5-10 minutes during which the "scientist" or staff member can briefly discuss nanoscience and how the butterfly uses this disguise. Other scientists may find this flex-hibit idea useful in their desire to demonstrate science concepts, as well. The integration of this work into the NISE network may pay large dividends in helping others with demonstrations. This is a collaboration between Georgia Tech and the Lawrence Hall of Science at Berkeley. This is a colorful demonstration that is quick, interesting and reversible so audiences can be entertained for a short 5-10 minutes during which the "scientist" or staff member can briefly discuss nanoscience and how the butterfly uses this disguise. Other scientists may find this flex-hibit idea useful in their desire to demonstrate science concepts, as well. The integration of this work into the NISE network may pay large dividends in helping others with demonstrations.
Portal to the Public: Expanding the National Network (PoP: ENN) is implementing around the county the successful NSF-funded Portal to the Public model in which researchers are trained to communicate and interact with the general public at informal science education (ISE) institutions about the research that they are conducting. The project, which follows on a thorough evaluation of the model at eight sites and current implementation at an additional fifteen sites, will incorporate twenty new ISE sites into the growing network, provide training and mentorship to ISE professionals on the use and adaptation of the PoP implementation manual and toolkits, and develop an enhanced network website that will serve as a communication and innovation hub. The work is responsive to the needs and activities of ISE organizations which continue to expand their missions beyond presenting to the public established science, technology, engineering and math (STEM) and are working to become places where visitors can also experience the process and promise of current research via face-to-face interactions with researchers. The project is expanding both the kind and number of institutions involved around the country and is facilitating their capacity to develop a knowledge base, share experiences and best practices.
Collaboration efforts between educator preparation programs and children's science museums are important in assisting elementary pre-service teachers connect the theory they have learned in their classrooms with the actual practice of teaching. Elementary pre-service teachers must not only learn the science content, but how to effectively deliver that science content to a group of students. One university provided their elementary pre-service teachers with the opportunity to prepare and deliver science lessons to students in a children's science museum in south Texas.
The Universally Designed Museum Programming project was envisioned as a way to create public programs that are more inclusive of people with disabilities. We used the concepts of universal design and Universal Design for Learning as well as our prior experiences with these topics in exhibition design and nanotechnology programming as a foundation for our work. Through this project, we gained insight into building a community of interest, facilitating a charrette in an inclusive way, using universal design guidelines to develop programs, and measuring the effectiveness of our process.
This Science Learning+ project will develop research-and-practice activities to explore how an integrated art, STEM, and society (what we refer to as STEAM) approach can expand science engagement and learning of youth aged 15-19, from low-income and non-dominant cultural communities. The project will review current knowledge, practice, and trends related to underrepresented youth, STEAM, and science engagement. The review will be used to develop: (1) A cross-setting research framework for investigating the relationship between informal STEAM learning experiences and young people's developing engagement with science. (2) Design principles for out-of-school STEAM programs that have proven effective in cultivating youth engagement with science and making relevant cross-setting connections. (3) Practitioner-friendly program evaluation tools that integrate findings from current research and practice related to cross-setting science learning of young adults especially non-dominant youth as it relates to STEAM learning experiences.
The purposes of the STUDIO 3D evaluation were to collect information about the impact upon student learning as a result of participating in the STUDIO 3D Project, as well as to elicit information for program improvement. Areas of inquiry include recruiting and retention, impact on project participants, tracking student impacts, and the project as a whole.