Informal STEM education spaces like museums can intentionally serve surrounding communities and support sustainable and accessible engagement. Building from this base, the project takes a stance that the intersection of the museum, home/family life and the youth’s internal practices and disciplinary sense of self are rooted in history and culture. Thus, this CAREER work builds on the following principles: Black families and youth have rightful presence in STEM and in STEM learning environments; Black families are valuable learning partners; and Black youths need counterspaces to explore STEM as one mechanism for creating future disciplinary agency. In partnership with the Henry Ford Museum and the Detroit-Area Pre-College Engineering Program, the project seeks to (a) expand the field's understanding of how Black youth engineer and innovate; (b) investigate the influence of a culturally relevant curriculum on their engineering practices and identity, knowledge, and confidence; and (c) describe the ways Black families and museums support youth in engineering learning experiences. The work will center on the 20-hour “Innovate” curriculum which was designed by the museum to bridge design, innovation, and creation practices with the artifacts of innovators throughout time. The project comprises six weekend “Innovate” sessions and an at-home innovation experience plus participation in an annual Invention Convention. By focusing on these aims, this research responds to the goals of the Advancing Informal STEM Learning (AISL) program, which seeks to advance evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments. This includes providing multiple pathways for broadening engagement in STEM learning experiences and advancing innovative research on STEM learning in informal environments.
The main research questions of this multiphase CAREER award are: (1) What practices do Black youths and families engage in as they address engineering, design, and innovation challenges? (2) In what ways does a culturally relevant museum-based innovation program influence the design and innovation practices and assessment performance of Black youths and families as they engage in engineering, design, and innovation across learning settings? (3) How does teaching innovation, design, and engineering through historical re-telling and reconstruction influence a youth’s perception of their own identities, abilities, and practices? and (4) How do Black families engage with informal STEM learning settings and what resources best support their engineering, design, and innovation exploration? Youth in sixth grade are the focus of the research. The work is guided by ecological systems, sociocultural learning, culturally relevant pedagogy, and community cultural wealth theories. During phase one, the focus will be to refine the curriculum and logistics of the study implementation. The investigator will enhance the curriculum to include narratives of Black innovators and engineers. Fifteen families will be recruited to participate in the program enhancement pilot and initial research cycle for phase two. In phase three another cohort of families will be recruited to participate. Survey research, narrative inquiry and digital ethnography will comprise the approaches to explore the research questions. The evaluation has a two-pronged focus: to assess (1) how well the enhanced Innovate curriculum and museum/home learning experience supports Black families’ participation and (2) how well the separate phases of the study connect and operate together to meet the research aims. The study’s findings can help families and informal practitioners leverage evidence-based approaches to support Black youth in making connections between history and out-of-school contexts to model and develop their innovative engineering practices. Additionally, this work has implications for Black undergraduate students who will develop skills through their mentorship and researcher roles, studying cultural practices and learning experiences. The research study and findings can inform the design of future museum/home learning programs and research opportunities for Black learners in informal learning spaces.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS:
Yuko IkkataiAzusa MinamizakiKei KanoAtsushi InoueEuan McKayHiromi M. Yokoyama
Using their imagination and creativity, inventors have made significant contributions to our world throughout the course of human history. In recent times, a growing community has responded to the need for more intensive research on Invention Education and within the last several years has begun organizing itself around collaborative action that will accelerate the uptake and practice of Invention Education. The purpose of this document is to provide a comprehensive community-driven framework and set of principles for Invention Education that can support its growth within formal and informal
The Researching Invention Education white paper compiles contributions from a community of individuals and organizations working in Invention Education (IvE) in the United States. IvE is a term that refers to the practice of teaching students how to problem-solve and think like inventors in order to become positive change-makers in the world. The paper was written by researchers interested in IvE who attended the 2018 InventEd convening hosted by The Lemelson Foundation. The group worked together for a year to publish their findings that were then uncovered at the 2019 InventEd convening in
DATE:
TEAM MEMBERS:
Audra SkukauskaiteStephanie CouchLeslie Flynn
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS:
Alex BellRaj ChettyXavier JaravelNeviana PetkovaJohn Van Reenen
This paper examines the differences and challenges encountered when trying to create informal blended (virtual and hands-on) engineering design STEM activities. It contrasts the creation of STEM activities for formal and informal learning environments, stressing that the differences extend far beyond the length of the activity or depth of any learning goals. The discussion begins with an examination of differences between the two learning environments that need to be taken into consideration. These differences include the physical environments, organizational structures, and the goals or
In informal science contexts, the word tinkering describes a learning process that combines art, science, and technology through hands-on inquiry. With the growth in popularity of the making and tinkering movements nationwide, these practices are increasingly making their way into early childhood environments where they have great promise to positively impact the early STEM learning experiences of young children. This 2-day conference hosted at the Exploratorium in San Francisco will bring together stakeholders exploring applications of tinkering in informal early childhood environments. The conference will provide opportunities to explore the role, value, and challenges associated with implementing meaningful tinkering interventions in learning environments serving young children. The project seeks to 1) Convene stakeholders from the tinkering and early childhood programs; and 2) further the exploration and evolution of practitioner and researcher knowledge about tinkering in early childhood contexts. The long-term goal is to support more young children being introduced to STEM learning through tinkering's adaptable approaches to STEM-learning that align with the developmental needs of this young population.
This project will collaboratively analyze and document the state of the field of STEM-rich tinkering in informal early childhood contexts. Additionally, the project will deepen relationships across the early childhood tinkering ecosystem. Additional outcomes include an effort to provide tangible resources to the field highlighting current promising practices and future opportunities for development. The conference will also provide an understanding of how tinkering interventions may contribute to the development of STEM interest, identity and learning amongst early childhood audiences. Finally, the conference will bring together research and practitioners to explore how tinkering in early childhood settings can be used effectively to meet the needs of diverse learners including learners from underserved and underrepresented communities. The project will recruit a total of 75 participants with backgrounds in the field of tinkering and STEM learning, early childhood research, and professional development practices representing a diverse set of institutions and organizations. Research questions for the conference will focus on: 1) What types of supports and professional development do early childhood educators need to facilitate early STEM learning through tinkering? 2) What types of built environment and hands-on materials best support young children's ability to learn STEM content and practices through tinkering? 3) What types of strategies best support caregiver involvement in young children's learning? 4) What is the role of early childhood tinkering in young children?s STEM learning, interest, and identity development? 5) How can culturally and linguistically sustaining pedagogies be used to ensure equity across a diversity of young learners and their families? To answer these research questions the project will use qualitative methods before, during and post-conference. Research methods will include a landscape analysis identifying needs of participants, surveys, observations and informal interviews with participants.
This Conference award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.
The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.
This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Engaging with Tinkering is a highly stimulating and complex experience and invites rich reflections from museum practitioners and teachers. "Tinkering as an inclusive approach for building STEM identity and supporting students facing disadvantage or with low science capital” presents the reflective practice process and tools designed by the "Tinkering EU: Building Science Capital for All" project aiming to understand in more depth the potential impact of using a Tinkering approach with students facing disadvantage. Using tools specifically designed to help teachers observe their students
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.
Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS:
Ibrahim YeterAnastasia Marie RynearsonHoda EhsanAnnwesa DasguptaBarbara FagundesMuhsin MeneskeMonica Cardella
Computational Thinking (CT) is an often overlooked, but important, aspect of engineering thinking. This connection can be seen in Wing’s definition of CT, which includes a combination of mathematical and engineering thinking required to solve problems. While previous studies have shown that children are capable of engaging in multiple CT competencies, research has yet to explore the role that parents play in promoting these competencies in their children. In this study, we are taking a unique approach by investigating the role that a homeschool mother played in her child’s engagement in CT