This document describes the Dimensions of Success (DoS), an assessment tool created by researchers at the Program in Education, Afterschool, and Resiliency (PEAR). DoS was created to help out-of-school time programs and researchers monitor and measure quality. It allows observers to collect systemic data along 12 quality indicators to pinpoint the strengths and weaknesses of afterschool science learning experiences.
DATE:
TEAM MEMBERS:
Anahit PapazianAshima ShahCaitlin Rufo-McCormick
Although stakeholders agree that afterschool STEM education can be powerful, there is less agreement on the critical question of which aspects of STEM education the afterschool field is best positioned to support. Hence, in spring 2012, the Afterschool Alliance undertook a study to ask afterschool stakeholders what aspects of STEM learning the field is best positioned to support. The aim of the Afterschool STEM Outcomes Study was to identify consensus views on appropriate and feasible outcomes and indicators for afterschool STEM programs. The study provides a realistic vision of the field’s
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
The article discusses ways racial and ethnic minorities are excluded from science, technology, engineering and math (STEM) fields. According to the article, the lack of minority STEM professionals in industries is blamed on their less rigorous early educational experience, lack of mentors and difficult work environment. Library staff can help alleviate many of these disadvantages through teacher education and thoughtful programming for students in a professional environment.
DATE:
TEAM MEMBERS:
Tiffany Williams
resourceevaluationProfessional Development, Conferences, and Networks
As part of the National Science Foundation-funded Access Algebra project, the Oregon Museum of Science and Industry (OMSI) developed both a 6,000 square foot traveling exhibition (Design Zone) and a professional development program for host-museum facilitators who would work in the exhibition. The primary goal of the project was to engage visitors in algebraic thinking, with a special focus on reaching a target audience of 10- to 14-year-olds and their families. Facilitation in Design Zone was intended to support and extend visitors’ engagements with the exhibits and engage visitors in
Design Zone’s primary objective is to engage visitors in algebraic thinking, with a special focus on reaching a target audience of 10- to 14-year-olds and their families. The exhibition is organized into three thematic areas: art, music, and engineering. Exhibits in each area are based on real-world design challenges in which math and algebra are used. Garibay Group was contracted to conduct the summative evaluation of Design Zone. Using a mixed methods approach, data were collected at three museums hosting the Design Zone exhibition.
As the global economic competition gets tougher, American policymakers and researchers are interested in finding ways to increase the number of students pursuing STEM (Science, Technology, Engineering, and Mathematics)-related majors in order for the United States to continue its role as an economic powerhouse. A survey study was employed to investigate a multi-charter school system's (Harmony Public Schools [HPS]) after-school program in which doing a science fair project was expected for all 4th-12th grade students, and students were encouraged to participate STEM-related clubs (MATHCOUNTS
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many science, technology, engineering, and mathematics (STEM) related fields. Research points to adolescence as the age where this sense of marginalization begins to develop. As a result, policy responses have utilized various frameworks such as: increased access
The article presents information on the use of informational graphic novels to improve student motivation for reading instruction in U.S. education. The author looks at U.S. Common Core State Standards and close reading techniques. The article also discusses the use of Japanese Manga comic books in mathematics education.
The C2C award addresses the lack of validated instruments to measure teamwork and collaboration in middle and high school students in out of school time (OST) settings by implementing a rigorous four-phase process to develop new assessments. Phase 1 focuses on defining the construct of teamwork and collaboration skills so it aligns with the research literature and is relevant to outcomes in a variety of STEM OST programs. Construct maps are developed during Phase 2 to guide item development. The instruments are piloted in Phase 3 through think-aloud interviews and survey administration with a diverse set of youth and programs. Through an iterative process, items are revised or removed based on their psychometric properties. The final phase is a national field test with a cross-section of STEM OST programs. C2C's intellectual merit is its potential to advance understanding of how to measure teamwork and collaboration skills in STEM OST programs. There is a national call for more measures to evaluate 21st century skills. C2C's creation of instruments to measure teamwork and collaboration skills in STEM OST programs helps to address this gap. The work of C2C addresses broader impacts and benefit society by creating tools to understand the role STEM OST programs play in readying our nation's youth for the STEM workforce. C2C will create instruments validated specifically for this diverse population, allowing programs to understand the role they play in important societal STEM workforce readiness outcomes. C2C also benefits the informal science education field by conceptualizing the construct of teamwork and collaboration within STEM OST programs and developing validated instruments to understand the impact of these programs on youth.