Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This article uses critical ethnography and analysis of student talk to refute claims that Haitian children are less than fully engaged in science classrooms. Josiane Hudicourt-Barnes provides examples from a bilingual science classroom to explain cultural differences in language and in students’ understanding of scientific argumentation. Hudicourt-Barnes posits that the Creole talk style of bay odyans is naturally scientific because it uses logic in argumentation. Ultimately, Hudicourt-Barnes proposes, cultural ways of thinking and speaking are good bases for science talk, particularly for
DATE:
TEAM MEMBERS: Savannah Benally Kerri Wingert
resource research Public Programs
In this study, the researchers investigated opportunities and challenges English language learners (ELLs) faced while learning the scientific practices of argumentation and communication of findings (NGSS practices 7 and 8; NGSS Lead States, 2013). Specifically, they asked how the teacher engaged ELLs in argumentation and communication and how the ELLs actually used these practices.
DATE:
TEAM MEMBERS: Kerri Wingert
resource research Public Programs
In order to broaden the conceptualizations of argument in science education, Bricker and Bell draw from diverse fields: the sociology of science, the learning sciences, and cognitive science to help practitioners think of new ways to bring argumentation into learning spaces while expanding what counts as scientific argument.
DATE:
TEAM MEMBERS: Kerri Wingert
resource research Public Programs
Argumentation in science involves the development, justification, and defence of evidence-based claims, together with the reasoned dispute of counterclaims. This process is the foundation for all scientific endeavours. Supporting the development of argumentation skills, therefore, is a key part of science education. Laboratory work is also as an essential part of science. Combining these two activities, therefore, would seem to be worthwhile. In this study, researchers explored the impact of three different lab-based tasks on the nature and quality of any subsequent argumentation.
DATE:
TEAM MEMBERS: Heather King
resource research Public Programs
When designing programs for science learning, it is important to consider that children's experiences with science begin years before they encounter science in the classroom. Children's developing understanding of science begins in their everyday activities and conversations about the natural and technical world. Children develop "scientific literacy" as they begin to learn the language of science (e.g., concepts such as "gravity" or "metamorphosis"), the kind of causal explanations that are used in scientific theories (e.g., the day-night cycle results from the rotation of the earth), and the
DATE:
resource research Informal/Formal Connections
For children to achieve an understanding of science and of the ways of doing science, and for them to be motivated to use these ways in coping with, understanding, and enjoying the physical, biological, and social world around them, it is not enough that they believe that science is practically important. They must also be curious. Curiosity calls attention to interesting, odd, and sometimes important items in the drama that is revealed to us through our senses. Idle or purposeful, curiosity is the motor that interests children in science; it is also the principal motor that energizes and
DATE:
TEAM MEMBERS: Herbert Simon Kevin Crowley
resource research Public Programs
This study explored the influence of a Saturday Science program that used explicit reflective instruction through contextualized and decontextualized guided and authentic inquiry on K‐2 students’ views of nature of science (NOS). The six‐week program ran for 2.5 hours weekly and emphasized NOS in a variety of science content areas, culminating in an authentic inquiry designed and carried out by the K‐2 students. The Views of Nature of Science Form D was used to interview K‐2 students pre‐ and post‐instruction. Copies of student work were retained for content analysis. Videotapes made of each
DATE:
TEAM MEMBERS: Valerie Akerson Lisa Donnelly
resource research Public Programs
Elementary school children are capable of reproducing sophisticated science process skills such as observing, designing experiments, collecting data, and evaluating evidence. An understanding of the nature of scientific knowledge requires more than teaching and learning the performance of these skills. It also requires an appreciation of how these actions lead to knowledge generation and shape its durable and tentative nature. Our understanding of activities that support the teaching and learning of the nature of scientific knowledge is still growing. This study compares how scientific
DATE:
TEAM MEMBERS: Susan Kirch
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project that uses the living laboratory model of informal cognitive science education to establish additional museum hubs.
DATE:
TEAM MEMBERS: Museum of Science, Boston Becki Kipling Marta Biarnes
resource research Public Programs
A study of docent-led guided school tours at a museum of natural history was investigated. Researchers engaged in naturalistic inquiry to describe how natural history content was conveyed to students and what students gained from this model of touring. They also investigated how the content and pedagogy within the guided tour complemented recommendations from formal science standards documents and informal learning literature. About 30 visiting school groups in Grades 2-8 were observed. Teachers (n = 30) and select students (n = 85) were interviewed. Researchers found that tours were organized
DATE:
TEAM MEMBERS: Anne Cox-Peterson David Marsh James Kisiel Leah Melber
resource research Media and Technology
This study provides a historical overview of the development of the instructional television as a tool within the context of science education. The technology was traced from its beginning as experiments in public service broadcasting by universities and television networks, though closed circuit, cable, and commercially produced science-related programming. The use of the technology as a teaching tool is examined in terms of the concept of scientific literacy and the means by which instructional television helped to accomplish the goals of scientific literacy.
DATE:
TEAM MEMBERS: Kenneth King
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting held in Washington, DC. It describes a project that uses museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities.
DATE: