In this paper, we contend that what to teach about scientific reasoning has been bedeviled by a lack of clarity about the construct. Drawing on the insights emerging from a cognitive history of science, we argue for a conception of scientific reasoning based on six 'styles of scientific reasoning.' Each 'style' requires its own specific ontological and procedural entities, and invokes its own epistemic values and constructs. Consequently, learning science requires the development of not just content knowledge but, in addition, procedural knowledge, and epistemic knowledge. Previous attempts to
In this paper, we use the concept of consequential learning to frame our exploration of what makes learning and doing science matter for youth from nondominant communities, as well as the barriers these youth must confront in working toward consequential ends. Data are derived from multimodal cases authored by four females from nondominant communities that present an account of 'science that matters' from their work during their middle school years. We argue that consequential learning in science for these girls involves engaging science with a commitment to their community. This form of
DATE:
TEAM MEMBERS:
Daniel BirminghamAngela Calabrese BartonAutumn McDanielJalah JonesCamryn TurnerAngel Roberts
This research paper critically explores the common definitions and perceptions of Making that may potentially disenfranchise traditionally underrepresented groups in engineering. Given the aspects of engineering design that are commonly integrated into Making activities, the Maker movement is increasingly recognized as a potentially transformative pathway for young people to developing early interest and understanding in engineering. However, “what counts” as Making can often be focused heavily on electronic-based and computational forms of Making, such as activities that involve 3D printers
This article focuses on the efforts of the Collaborative for Early Science Learning (CESL), a group of six museums led by the Sciencenter in Ithaca, New York, that partner with their local Head Start programs to provide training for teachers and opportunities for family engagement. These efforts address the gap between children’s readiness to explore science through everyday experiences and adults’ support. CESL believes that hands-on professional development (PD) opportunities for teachers and families can reduce adult discomfort with facilitating science programming and increase their
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) developed, implemented, and evaluated the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through this grant, the NCBYS extended opportunities for informal science learning for the direct benefit of blind students by conducting six NFB STEM2U regional programs included programs for blind youth, their parents/caregivers, blind teen mentors (apprentices), and museum educators.
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with
Citizen science offers youth and educators unique opportunities to observe and explore the world through authentic research experiences that are necessary for robust STEM (science, technology, engineering, and math) learning. STEM learning is key to fostering informed and engaged youth who are ready to tackle the challenges of our future. Our increasingly complex world depends on helping youth cultivate skills needed to think critically and creatively about 21st Century challenges— skills such as observation, communication, and data literacy. STEM gives all students the building blocks for
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
One of the principal challenges of the partnership of scientists and high school students are the existent barriers of language between them (Kim & Fortner, 2007). In other words, since scientists are usefully deemed as characters with higher power, status, and knowledge, students may feel nervous or intimidated, especially when scientists speak jargons and complex language. The best educators have a magical way of engaging their audiences with compelling stories. Even the
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
Purpose & Problem - According to some existing results identified in the literature, the partnership between high school students and scientist involves several challenges, such as time management, lack of equipment, communication barriers, organization, complexity of the scientific language and scientist availability. The purpose is to address these problems and identify effective ways that can enhance the partnership between the scientist and high school students during
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX.
This study introduces cogenerative dialogues as a pedagogical tool to enhance the communications between students and engineers in a university internship environment. High school student interns worked with engineers for 7 months and were invited to conduct cogenerative dialogues with engineers regularly and discuss any issues, concerns, positives happened in the internship in order to improve their learning experience.
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. It describes the Work With a Scientist (WWASP) program, in which scientists and high school students engage in co-generative dialogues.
This summative evaluation report focuses on the impact that the Working with a Scientist Program at the University of Texas at El Paso (UTEP) had on its student participants. Student participants were recruited from regional high schools that are categorized as Title I schools, due to the large population of low income students that they serve. The participants engaged in mentored research activities a UTEP every other Saturday during the spring semester and on weekdays during the summer. Their mentors were professional scientists from different STEM disciplines, such as Chemistry, Immunology