Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
MobiLLab is a mobile science education program designed to awaken young people’s interest in science and technology (S&T). Perceived novelty, or unfamiliarity, has been shown to affect pupils’ educational outcomes at similar out-of-school learning places (OSLePs) such as museums and science centers. A study involved 215 mobiLLab pupils who responded to three surveys: a pre-preparation, at-visit, and post-visit survey. Results provide evidence for four dimensions of pupils’ at-visit novelty: curiosity, exploratory behavior, oriented feeling, and cognitive load. Findings also show that classroom
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content.
Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
EvaluATE is a national resource center dedicated to supporting and improving the evaluation practices of approximately 250 ATE grantees across the country. EvaluATE conducts webinars and workshops, publishes a quarterly newsletter, maintains a website with a digital resource library, develops materials to guide evaluation work, and conducts an annual survey of ATE grantees. EvaluATE's mission is to promote the goals of the ATE program by partnering with projects and centers to strengthen the program's evaluation knowledge base, expand the use of exemplary evaluation practices, and support the continuous improvement of technician education throughout the nation. EvaluATE's goals associated with this proposal are to: (1) Ensure that all ATE Principal Investigators and evaluators know the essential elements of a credible and useful evaluation; (2) Maintain a comprehensive collection of online resources for ATE evaluation; (3) Strengthen and expand the network of ATE evaluation stakeholders; and (4) Gather, synthesize, and disseminate data about the ATE program activities to advance knowledge about ATE/technician education. The Center plans to produce a comprehensive set of evaluation resources to complement other services, engaging several community college-based Principal Investigators and evaluators in that process.
EvaluATE's products are informed by current research on evaluation, the National Science Foundation's priorities for the evaluation of ATE grants, and the needs of ATE PIs and evaluators for sound guidance that is immediately relevant and usable in their contexts. The fundamental nature of EvaluATE's work is geared toward supporting ATE grantees to use evaluation regularly to improve their work and demonstrate their impacts. All of EvaluATE's products are available to the public. EvaluATE's findings from the annual survey of ATE grantees aid in advancing understanding of the status of technician education and illuminate areas for additional research. The new survey investigates ATE grantees' work to serve underrepresented and special populations, including women, people of color, and veterans. Survey data are available upon request for research and evaluation purposes.
DATE:
-
TEAM MEMBERS:
Lori WingateArlen GullicksonEmma PerkKelly RobertsonLyssa Becho
“The Roads Taken” virtual conference was part of a three-phase research project designed to explore the very long-term impact of STEM youth programs (such as the iconic YouthALIVE program). In this first phase, a virtual conference was held to engage youth program practitioners in the development and testing of a Program Profile prototype, a structured document that helps institutions to characterize their own youth programs in useful ways.
Following the webinars and the completion of the Program Profile by each organization, participants were asked to complete a brief survey (included as
Video has become a key tool for scientific communication because it increases the outreach and impact of projects, furthers scientific research within and across fields of study, and offers an accessible medium to engage the public in the understanding of science. This project supports the expansion of an interactive, online STEM Videohall where hundreds of NSF-funded researchers share their work through brief video narratives and interactive discussion. While the Videohall is accessible year-round, periodic annual Showcase events are used to drive visitors to the site where they can engage with one another, the project investigators and trained facilitators. The Videohall is a multiplier of NSF's investments in individual projects because it allows STEM education researchers to become aware of, and learn from, related work that is funded across NSF programs and directorates, and other federal agencies. In 3-minute video narratives, investigators share ideas, resources, data, evidence of impact, strategies and challenges. The Videohall platform supports open access and is designed to foster communication in ways that scale beyond traditional formats such as academic conferences. Moreover, because the online STEM Videohall is open to the public, it allows STEM investigators to share their work with multiple stakeholder communities including K-12 educators and school leaders, informal educators and community organizations, the STEM industry, education policy makers and families. Finally, because each video narrative is accompanied by a facilitated online discussion thread, investigators have a unique and valuable mechanism for receiving feedback from these various stakeholder communities. The STEM Videohall project is funded by the Discovery Research K-12 program (DRK-12), which seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.
This project brings together seven NSF-funded resource centers who work with their respective communities to encourage Principal Investigators to share video narratives of their work through annual NSF STEM Showcase events. Each annual Showcase event presents videos created by 150-230 projects; many of the projects are affiliated with one of the seven resource centers, but others are from projects across NSF directorates and beyond. During a one-week period, Principal Investigators, their project staff, as well as the public at large, are invited to engage in interactive discourse, providing queries, comments, and feedback. Participants also vote for favorite presentations through "Presenters' Choice," "Public Choice," and "Facilitators' Choice," processes. This participant voting system serves to increase engagement and enhances outreach of the event through social media. After the one-week Showcase event concludes, all of the videos along with the related discourse remain available to the public online, who continue to access the Showcase throughout the year. Based on prior pilot work, it is estimated that over the course of a year, over 30,000 visitors, from over 150 countries, will engage with each annual Showcase. Videos from annual showcase events will be shared, reused, and repurposed to create new products with new constituencies. The project includes technical development efforts to iteratively improve its interactive platform, outreach efforts before each annual Showcase event, facilitation of the week-long event, and intensive dissemination efforts. A research component examines the extent of participation on various constituencies, the benefit of participation to projects, and the success of the events in terms of dissemination nationally and internationally.
This proposal was submitted in response to EHR Core Research (ECR) program announcement NSF 15-509. The ECR program of fundamental research in STEM education provides funding in critical research areas that are essential, broad and enduring. EHR seeks proposals that will help synthesize, build and/or expand research foundations in the following focal areas: STEM learning, STEM learning environments, STEM workforce development, and broadening participation in STEM. The ECR program is distinguished by its emphasis on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation.
The study will investigate the processes that connect gestures and mathematics learning. Gestures are an important yet under-investigated aspect of mathematics teaching. They can influence students' memory and understanding of mathematical representations. The series of studies will examine students' learning of the concept of mathematical equivalence by testing instruction that incorporates commonly used verbal explanations and gestures. Mathematical equivalence includes understanding the meaning of the equal sign and determining if two expressions are equal. Second and third grade children will be participants. Of particular interest in the studies is the influence of gestures on preexisting knowledge of procedures, how gestures support learning beyond emphasizing information and direct learners' attention, and the creation of procedural knowledge.
The series of experimental studies will examine the mechanisms that connect gestures and procedural understanding of mathematical equivalence. The studies begin in the first phase with examining how gesture is connected to procedural knowledge of mathematical equivalence. Subsequent studies investigate how gesture functions as a mechanism for learning beyond emphasizing or directing attention to relevant information. Data collected will students' responses to equivalence problems and eye tracking data to follow whether students are looking from one side of the equal sign to the other. In the second phase of the work, the studies will examine how gesture has beneficial effects on learning more generally in mathematics. Working memory will be assessed in order to examine the role of gesture across different individuals. Fraction tasks will be used to examine the generalization of the previous results regarding gestures to other mathematics concepts.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper
resourceresearchProfessional Development, Conferences, and Networks
DACUM (Developing A CUrriculuM) was developed in Canada in the 1980s as a tool for industry to improve training. It has been championed in the USA by the Center for Education for Employment at The Ohio State University where they have conducted thousands of DACUMs and trained scores of people to conduct them. As used today, DACUM is a unique, innovative, and very effective method of job, and/or occupational analysis. It is also very effective for conducting process and functional analyses. The DACUM analysis workshop itself involves a trained DACUM facilitator and a committee of 5-12 expert
This review is a short synthesis of some of the literature around learning in adulthood, professional learning, professional learning frameworks, and models of professional learning frameworks. Its primary purpose is to inform the development of an interview protocol for the exploration of building a professional learning framework with a secondary purpose of providing richer shared language and understanding around some of the central constructs of a professional learning framework for the informal science education community and other informal learning environments.
This project, conducted by the University of Pittsburgh and the University of California, Berkeley, seeks to discover what makes middle school students engaged in science, technology, engineering, and mathematics (STEM). The researchers have developed a concept known as science learning activation, including dispositions, practices, and knowledge leading to successful STEM learning and engagement. The project is intended to develop and validate a method of measuring science learning activation.
The first stage of the project involves developing the questions to measure science activation, with up to 300 8th graders participating. The second stage is a 16-month longitudinal study of approximately 500 6th and 8th graders, examining how science learning activation changes over time. The key question is what are the influencers on science activation, e.g., student background, classroom activities, and outside activities.
This project addresses important past research showing that middle school interest in STEM is predictive of actually completing a STEM degree, suggesting that experiences in middle school and even earlier may be crucial to developing interest in STEM. This research goes beyond past work to find out what are the factors leading to STEM interest in middle school.
This work helps the Education and Human Resources directorate, and the Division of Research on Learning, pursue the mission of supporting STEM education research. In particular, this project focuses on improving STEM learning, as well as broadening participation in STEM education and ultimately the STEM workforce.
The trend of utilising open learning environments and informal learning sources has a clear link to outdoor education, which bridges the gap between formal education and informal learning. According to the findings related to informal learning and its relevance to early professional development, the crucial era seems to be the first 3 years as an inexperienced teacher. Despite the long history, outdoor education needs new research methods. In Finland, the new National Curriculum 2016 underlines teaching of this “phenomenon” besides the traditional subject orientated teaching. This challenges
DATE:
TEAM MEMBERS:
Hannu SalmiArja KaasinenLiisa Suomela