Teachers’ beliefs are key in determining the effect of professional development (PD) initiatives. In this study, teachers’ self-efficacy beliefs about their ability to teach science and the amount of PD they received were found to be significant and positive predictors of student achievement.
This Australian study by Logan and Skamp reports on students’ science interest across their first four years of secondary school. The findings will be relevant to all concerned about the decline in the numbers of students choosing to study science at higher levels and pursue science-related careers. Findings highlight the importance of an individual teacher’s pedagogical practices in either fostering or hindering student interest in science.
This paper examines how students, teachers, and parents evaluate residential fieldwork courses. As in prior research, findings from questionnaire data indicate that fieldwork effects social, affective, and behavioural learning. More surprisingly, focus group interviews captured increases in cognitive learning as well. This paper underscores the value of out-of-school experiences, particularly for students from under-resourced backgrounds.
Do teachers’ emotions about climate change affect their approach to instruction? Researchers examined the relationships among teachers’ emotions about climate change, their perceptions of the plausibility of the findings of climate science, and their understanding of climate science. The findings paint a complicated picture of the potential effect of emotions on instructional practice.
This paper focuses on the ways students can construct scientific explanations and arguments as part of scientific inquiry. Berland and Reiser synthesize understandings from philosophy, science, and logic in order to interpret students’ arguments during a unit on invasive species in the Great Lakes.
Students with special educational needs score significantly below their peers across several measures of science achievement. However, educational approaches that provide appropriate scaffolding and support, such as the inquiry-based science writing heuristic described in this paper, can benefit special educational needs students and ensure an equitable experience for all.
Research has intimated that engineering design activities can enhance students’ understanding of engineering and technology and can increase their interest in science. Few studies, however, have defined or measured this interest empirically. Dohn examined the effect of an eight-week engineering design competition on 46 sixth-grade students. His findings suggest that design tasks can indeed stimulate interest. He found four main sources of interest: designing inventions, trial-and-error experimentation, making the inventions work, and collaboration.
This study helps us understand how children and adolescents perceive science and scientists, and it suggests some factors that influence those images. Researchers collected drawings from Catalan students ages 6 to 17 and analyzed them using the Draw-A-Scientist Test (Chambers, 1983). Findings show that, in general, Catalan students, and particularly boys over 12, retained classic stereotypes of scientists.
Researchers asked 5,000 Norwegian college-level students of STEM about the sources of inspiration for their educational choices. The most influential people were teachers and parents—the people who knew the young people best. The findings suggest that the most effective STEM role models are individuals who have a personal connection with the young person making education and career choices.
In this paper, Anderman and colleagues examine the skills adolescents need in order to learn science effectively. They note that many negative experiences associated with science learning could be avoided if educators were more aware of the abilities of adolescents and the types of environments that foster particular abilities. They offer seven recommendations to practitioners.
In this comparative case study, Enright explores whether the very act of labeling students contributes to continued differences in educational opportunity for students labeled “mainstream” and “non-mainstream.”
This article provides firm evidence, for formal and informal educators alike, that shared learning can be powerful and meaningful, if carefully considered. Findings from a study conducted in a summer middle school mathematics class suggest that when students are able to ask legitimate, authentic questions and share understanding about a common problem, their learning becomes truly “distributed by design.”