To acquire skills associated with decision-making on socioscientific issues, students need to understand the concepts of risk. Teaching about risk involves acknowledging the uncertainty and limitations of scientific knowledge. This study explores the ways in which risk may be addressed in science education.
Brooks uses Vygotskian theory to explain how drawing helps children to construct meaning and share their ideas with others. She argues that drawings help to bridge the gap between observation-bound thinking and more abstract, symbolic (i.e., scientific) thinking. The article offers ISE practitioners a clear introduction to Vygotskian theory and highlights the importance of drawing and visualisation when conducting inquiries and making sense of new concepts.
This study presents an interesting cross-national analysis of young people’s preferences, expectations, and perceptions of ability regarding STEM subjects. It finds that gender plays a significant role in students’ choices regarding STEM study and careers on the basis of comparison of students from four countries using the data from PISA, the international cross-comparison study. This study provides ISE educators with an insight into young people’s thinking regarding STEM. It also suggests possible strategies that may be implemented by ISE initiatives for greater gender equity in STEM.
In this study, the authors describe a conceptual framework addressing culturally based ways of knowing, and provide a brief description of their efforts to design a community-based summer science program with a Native American tribe using this framework. To address the call to attract culturally diverse students to STEM fields, the authors advocate supporting students in their navigation of multiple and perhaps conflicting epistemologies, and using the student community as resources to be built upon, rather than pushing them toward replacing their personal epistemologies with canonical
The authors argue that to address the lack of student interest in STEM careers, educators need to better understand the career choice and the decision-making processes of students. To better understand student decision-making, the authors interviewed 13 high school students and identified four types of conversation (formative, performative, consequent, and potential) regarding science-related professions. These four ways of talking can inform educators about ways to share information about science careers.
Using Gee’s (2004) notion of ‘affinity spaces’ – places where people collaboratively interact in response to a common interest or affinity – this paper examines how a week-long astronomy camp can shape student self-identities. The paper also examines the design of the camp and notes that it successfully blends the ‘student-led research’ approach with the ‘cognitive-apprenticeship model’.
Teachers who participated in professional development aimed at increasing awareness of the cognitive and social functions of questioning social understanding and questioning practices led to teachers creating more student-centered classrooms. This research shows that, through discourse analysis, teachers were able to reflect on and adopt questioning strategies that led to students’ higher-level thinking, longer and more sophisticated responses, and self-evaluation.
In this study, researchers investigated the commonly held view that collaboration improves scientific argumentation. The study tested the perspective that in collaborative investigations individuals build off each others' ideas, taking advantage of different cognitive and monitoring resources in the group, in order to develop more compelling and accurate scientific arguments than they would have if they had been working alone. The study results showed a mix of outcomes for the students.
A modified guided tour increased students’ intrinsic motivation, interest, and perceived competence, and was more interesting and less boring than a traditional docent-led tour. Providing students with more opportunities for group work and active participation led to improvement in understanding and motivational and emotional states during the visit. Experiencing less negative emotions (anger) during the visit and prior knowledge contributed to a better understanding.
This study investigates the relationship between science learning, science learning identities, and student agency. To support the development of science learning identities, the authors argue for the need to provide children/youth with opportunities to engage with science in ways that meaningfully blend the world of science with students' social worlds. This paper can help ISE educators leading youth programs consider the ways they listen to voices and interests of children/youth in order to affirm and support their development of identities as productive science learners.
If student interest in science is a predictor of careers in science, how can we characterize student interest across ages? Analyzing 6,000 questions from students gathered from informal science settings such as questions submitted to TV shows or Ask-a-Scientist websites, this study classifies student interest in science into six clusters. Younger students (K-9) showed interest in zoology, technology, and astrophysics while older students (10–12) showed interest in physics, chemistry, and biology. This shift of interest to science topics covered in school is relevant to informal science
This paper provides an interesting insight into how educators can support learners in coming to understand the nature of matter. Whilst the specific focus is on students’ implicit assumptions and reasoning strategies in a particular domain, the broader discussion exploring the differences between novice and expert thinking is relevant to all educators seeking to support learners to engage with new content.