The goal of the project is to advance understanding of basic questions about learning and teaching through the development of a theory of embodied mathematical cognition that can apply to a broad range of people, settings and activities. The investigative team brings together expertise from a range of quantitative and qualitative research methodologies. A theory of embodied mathematical cognition empirically rooted in classroom learning and workplace practices will broaden the range of activities and emerging technologies that count as mathematical, and help educators to envision alternative forms of bodily engagement with mathematical problems.
DATE:
-
TEAM MEMBERS:
Ricardo NemirovskyRogers HallMartha AlibaliMitchell NathanKevin Leander
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
This project is intended to develop a model for STEM education through local libraries. There are several unique features in this endeavor. The model is being aimed at rural libraries and adult residents that are geographically remote from typical venues such as museums, zoos, and science centers. According to the 2000 census, there are 50 million individuals in this designation and the size of the group is increasing and becoming more diverse. Efforts to impact diverse audiences who are economically disadvantaged will be part of the plan. In many rural locations there are few community venues, but libraries are often present. The American Library Association and the Association Rural and Small Libraries have begun the reinvention of these libraries so they can become more attuned to the communities in which they are apart. Thus, this project is an effort to find new ways of communicating STEM concepts to a reasonably large underserved group. The design is to derive a "unit of knowledge enhancement" (some portion of Climate Change, for example) through a hybrid combination of book-club and scientific cafe further augmented with videos and web materials. Another part of the design is to enhance the base STEM knowledge of library staff and to associate the knowledge unit with an individual who has the specific STEM topic knowledge for a specific unit. Considerable effort shall be expended in developing the models for staff knowledge enhancement with a progressive number of librarians in training from 8 to 20 to 135. To build the content library model, five units of knowledge will be devised and circulated to participating libraries. Evaluation of the project includes front end, formative and summative by the Goodman Research Group. In addition to the "units of knowledge enhancement," the major results will be the model on how best to relate and educate citizens in rural environments and how to educate the library staff.
This article provides firm evidence, for formal and informal educators alike, that shared learning can be powerful and meaningful, if carefully considered. Findings from a study conducted in a summer middle school mathematics class suggest that when students are able to ask legitimate, authentic questions and share understanding about a common problem, their learning becomes truly “distributed by design.”
In recent years, many technological interventions have surfaced, such as virtual worlds, games, and digital labs, that aspire to link young people's interest in media technology and social networks to learning about science, technology, engineering, and math (STEM) areas. Despite the tremendous interest surrounding young people and STEM education, the role of school libraries in these initiatives is rarely examined. In this article, we outline a sociocultural approach to explore how school library programs can play a critical role in STEM education and articulate the need for research that
DATE:
TEAM MEMBERS:
Mega SubramaniamJune AhnKenneth FleischmannAllison Druin
There is a movement afoot to turn the acronym STEM—which stands for science, technology, engineering, and mathematics—into STEAM by adding the arts. Science educators have finally begun to realize that the skills required by innovative STEM professionals include arts and crafts thinking. Visual thinking; recognizing and forming patterns; modeling; getting a "feel" for systems; and the manipulative skills learned by using tools, pens, and brushes are all demonstrably valuable for developing STEM abilities. And the National Science Foundation and the National Endowment for the Arts have gotten
This paper explores the importance of iterative design and evaluation in developing playful learning experiences in museums. According to research, play has five defining aspects: it is structured by constraints, active without being stressful, focused on process not outcome, self-directed, and imaginative (Gray 2008). For each of these aspects, we demonstrate how an iterative process of development and formative testing improved several museum exhibits, engendering more playful learning experiences for visitors. We focus on the assessment element of the design-test process, offering in detail
English Language Learners (ELLs), a diverse group of individuals from across the world who are learning English for the first time, make up the fastest growing segment of the student population in United States public schools. This issue brief displays how the extra time and hands-on learning experiences provided by quality afterschool programs can allow for a specialized, less-formal learning environment in which ELLs can develop language and social skills that otherwise could not be addressed through the less flexible schedule of the regular school day.
DATE:
TEAM MEMBERS:
Afterschool Alliance
resourceprojectProfessional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under‐represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy‐value model of achievement‐related choices. In addition it draws on sociological theories of late‐modernity and identity, which situate
DATE:
TEAM MEMBERS:
Maria Vetleseter BoeEllen Karoline HenriksenTerry LyonsCamilla Schreiner
This article is a response to Pike and Dunne's research. The focus of their analysis is on reflections of studying science post-16. Pike and Dunne draw attention to under enrollments in science, technology, engineering, and mathematics (STEM) fields, in particular, in the field of physics, chemistry and biology in the United Kingdom. We provide an analysis of how the authors conceptualize the problem of scientific career choices, the theoretical framework through which they study the problem, and the methodology they use to collect and analyze data. In addition, we examine the perspective they