Key challenges and opportunities are outlined in the ERA perspective and the role of evaluation as an instrument in the socialisation of science and technology is explored. Only an integrated and highly socialised science and technology, deeply embedded in society and involving all the relevant stakeholders, can address the complex problems Europe faces today and thus improve its research position and competitiveness worldwide.
DATE:
TEAM MEMBERS:
Evanthia Kalpazidou Schmidt
resourceresearchProfessional Development, Conferences, and Networks
Within the research framework programmes, the European Commission's interest in societal issues pertaining to science and technology has been increasing over time. An important step in this direction has been taken with the establishment during the Seventh Research Framework Programme (FP7) of the theme "Science in Society" (SiS) in the Specific Programme "Capacities". From this perspective, the theoretical and practical horizon of science and technology (S&T) socialisation discussed in this issue of JCOM fits well with the SiS strategy. In fact, S&T socialisation refers, on the one hand, to
In the last decades, production of science and technology as well as science-society relationships started changing rapidly. Research is asked to be more effective, fast, accountable, trans-disciplinary, result-oriented, policy-driven and able to generate benefits for people and firms in the short and middle run. While a strong intensification of science-society relationships is occurring, an increasing number of actors and stakeholders are involved in research production. At the same time, pervasiveness of technology is rendering users an active part in technological development; economic and
NASA’s Science Mission Directorate (SMD) explores the Earth, the Sun, our solar system, the galaxy and beyond through four SMD divisions: Earth Science, Heliophysics, Planetary Science and Astrophysics. Alongside NASA scientists, teams of education and public outreach (EPO) specialists develop and implement programs and resources that are designed to inspire and educate students, teachers, and the public about NASA science.
Since 2011, the Community for Advancing Discovery Research in Education (CADRE), housed at Education Development Center, has been collaborating with the National Science Foundation on a series of national and regional STEM Smart meetings, which bring together educators, advocates, policy makers, and STEM thought leaders. Particularly useful resources resulting from these meetings are easy-to-read STEM Smart Briefs on a number of STEM education issues.
STEM Pathways is a collaboration between five Minnesota informal STEM (science, technology, engineering, and mathematics) education organizations—The Bakken Museum, Bell Museum of Natural History, Minnesota Zoo, STARBASE Minnesota, and The Works Museum—working with Minneapolis Public Schools (MPS) and advised by the Minnesota Department of Education. STEM Pathways (logo shown in Figure 1) aims to provide a deliberate and connected series of meaningful in-school and out-of-school STEM learning experiences to strengthen outcomes for students, build the foundation for a local ecosystem of STEM
The science education community is buzzing about STEM learning ecosystems, ecologies of learning, and ecological perspectives on learning. You may not know it, but if your teaching involves building on young people’s prior knowledge or making connections between the science curriculum and science in the broader world, your work may already reflect aspects of ecological learning theories. At the heart of an ecological perspective on learning is the need to make connections across formal, informal, and everyday learning. So, what are STEM learning ecologies all about, and how can science
Connected Science Learning is a journal around which all science, technology, engineering, and math (STEM) educators can gather. The National Science Teachers Association (NSTA) and the Association of Science-Technology Centers (ASTC) have partnered on this National Science Foundation (NSF)–funded project to leverage our extensive combined reach across the formal and informal STEM educator communities. NSTA represents about 50,000 K–12 science educators, while ASTC member science centers and museums are in communities across the globe, reaching 100 million visitors per year, many of whom are
My dream—many would call it a fantasy—is that someday, science will be as pervasive in society as sports. We already have professional science, but imagine the day that we have extensive programs that feature intramural science, after-school science, and that pick-up science activity at the local park. Passionate amateur scientists will exist in abundance: more amateur geologist rock collectors, more amateur paleontologist fossil collectors, more amateur astronomers who write research papers with professional astrophysicists, and more citizen science projects that provide critical data to
In this article, we invite you to expand your vision of what it means to work at the intersections of formal and informal science and literacy education by describing how educators have collaborated to create programs that blend science and literacy in schools, in museums, and across these two spaces. In 2012, K–12 teachers from the National Writing Project (NWP) began working with the Association of Science-Technology Centers (ASTC) and science museum educators in the National Science Foundation–funded Intersections project, which is being evaluated by Inverness Research. NWP is a network
The connections among neuroscience, educational research, and teaching practice have historically been tenuous (Cameron and Chudler 2003; Devonshire and Dommett 2010). This is particularly true in public schools, where so many issues are competing for attention—state testing, school politics, financial constraints, lack of time, and demands from parents and the surrounding community. Teachers and administrators often struggle to make use of advances in educational research to impact teaching and learning (Hardiman and Denckla 2009; Devonshire and Dommett 2010). At the Franklin Institute, we
Over the past ten years, investments in infrastructure for informal STEM education and science communication have resulted in significant growth in the number and variety of resources and depth of expertise available to members of the STEM research community wishing to develop outreach, engagement and broader impacts activities. This report/white paper recounts some of the developments that led to the existing synergy between Informal STEM Education (ISE), science communication, and STEM research, provides examples of infrastructure and resources that support this work, and identifies areas of