This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Living Laboratory is a model for museum-academic partnership that aims to educate the public about child development by immersing museum visitors in the process of scientific discovery. Living Laboratory embraces a "mutual professional development" philosophy, in which museum educators and scientists share their expertise with one another through a variety of regular interactions.
Wallace and Brooks examined the culture of an elementary science education methods course conducted in a summer science camp, along with the professional identity development of the preservice teachers during their participation in the course.
To date, no national studies of science-focused out-of-school time (OST) programs have been implemented, making it difficult to get a sense of program diversity and characteristics. In this paper, Laursen, Thiry, Archie, and Crane map the national landscape of U.S. OST science, technology, and engineering programs. The findings allow the authors to describe a generalized profile for each of eight types of OST program providers.
Cannady, Greenwald, and Harris call into question the accuracy of the STEM pipeline metaphor. They argue that a decade of pipeline-related policy prescriptions has not significantly affected the numbers or demographics of the STEM workforce. The authors found that almost half of STEM workers did not follow the traditional pipeline to a STEM career.
The Mabee Library at MidAmerica Nazarene University will create a Center for Games and Learning, which will be used to incorporate games in higher education curricula and academic life, with the goal of promoting skills such as collaboration, critical thinking, and strategic thinking. A cohort of faculty members will incorporate games into selected courses, and evaluations will be performed to assess the acquisition of skills through gaming. Following the dissemination of these findings, the Center for Games and Learning will remain as a pioneering campus resource for future faculty to incorporate in their courses.
The number of Latinos and Native Americans represented in library and information science professions is extremely low. The University of Arizona School of Information Resources and Library Science will address this inequity in its Connected Learning in Digital Heritage Curation project, which focuses on archives and special collections, medical librarianship, and public librarianship. The project will educate 24 culturally competent master’s degree students to serve Latino and Native American communities in the digital world. Students will gain hands-on experience working as graduate assistants with project partners: the University of Arizona Libraries, Center for Creative Photography, Arizona Health Sciences Library, Pima County Public Library, Arizona Historical Society, Arizona State Museum, Labriola National American Indian Data Center, American Indian Film Gallery, Laboratory of Tree-Ring Research and the Arizona State Library, Archives and Public Records.
The Detroit Zoo will develop an innovative partnership to help underrepresented students achieve success in STEM (Science, Technology, Engineering, and Math) higher education and careers. The “Learning Classroom—Community of Practice” project will bring together the zoo’s informal educators and STEM content experts with partners at the Detroit Area Pre-College Engineering Program and Oakland University’s School of Education and Human Services in four workshops designed to create a shared language, vision and values around program development and implementation. The group will develop methods for addressing developmental needs of youth while providing science education relating to wildlife conservation and environmental stewardship. They will also build a process for bringing new members into the collaborative with the ultimate goal of delivering large and sustained STEM projects in the metropolitan Detroit area. While focusing on creating a positive impact on STEM achievement and success in Detroit area youth, the project will identify aspects of the process that can be replicable in other regions.
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
The CSMC-OMSI Partnership for Public Engagement (COPPE) project was developed to establish a strong and long-lasting partnership between the Center for Sustainable Materials Chemistry (CSMC) and the Oregon Museum of Science and Industry (OMSI). Through participation in this project, COPPE researchers and OMSI educators sought a deeper understanding of each other's profession while simultaneously developing a suite of Informal Science Education (ISE) outreach programs that engage the public in new and enduring ways. These new ISE platforms were developed to enhance public awareness in the areas
DATE:
TEAM MEMBERS:
Oregon Museum of Science and IndustryAnne Sinkey
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
Project TRUE (Teens Researching Urban Ecology) was a summer research experience for New York City youth that focused on strengthening their STEM interest, skills, and ultimately, increasing diversity in STEM fields. Through a partnership between an informal science institution (the Wildlife Conservation Society) and a university (Fordham University), 200 high school students conducted urban ecology research at one of four zoos in New York City under the guidance of STEM mentors. A unique feature of Project TRUE was its near-peer mentorship model, in which university professors mentored graduate urban ecology students, who mentored undergraduate students, who mentored high school students Science research projects focused on urban ecology topics, with high school students identifying their own research questions that were nested within the undergraduate mentor’s larger research question, thereby establishing a sense of ownership. Youth collected and analyzed their own data and the experience culminated in the creation of research posters, with teams presenting their posters to the public at a student science symposium.
This project was funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. We studied the impacts of two key parts of the program – conducting authentic science research and near-peer mentorship – on the STEM trajectories of almost 200 high school students who participated in the program from 2015 to 2018. The research explored short-term outcomes immediately after the program and followed up with students multiple years after participation to understand the medium-term impacts of the experience during and after the transition from high school to college.
Teachers’ beliefs are key in determining the effect of professional development (PD) initiatives. In this study, teachers’ self-efficacy beliefs about their ability to teach science and the amount of PD they received were found to be significant and positive predictors of student achievement.