This research study involves collaboration between researchers at the University of Maryland, College Park and Bowie State University, an HBCU, to examine a multi-component pre-service model for preparing minority students to teach upper elementary and middle level science. The treatment consists of (1) focused recruitment efforts by the collaborating universities; (2) a pre-service science content course emphasizing inquiry and the mathematics of data management; (3) an internship in an after school program serving minority students; (4) field placements in Prince Georges County minority-serving professional development schools; and (5) mentoring support during the induction year. The research agenda will examine each aspect of the intervention using quantitative and qualitative methods and a small number of case studies.
DATE:
-
TEAM MEMBERS:
James McginnisSpencer BensonScott Dantley
resourceprojectProfessional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's
DATE:
TEAM MEMBERS:
National Research Council
resourceresearchProfessional Development, Conferences, and Networks
This guide provides effective practices for anyone — university faculty member, K–12 teacher, or administrator — who wants to create a project that partners science, technology, engineering, and mathematics (STEM) graduate students (Fellows) with K–12 teachers on a sustained basis. These recommendations come from the community of faculty members, graduate students, K–12 teachers, program managers, and evaluators who participated in the U.S. National Science Foundation (NSF) Graduate STEM Fellows in K–12 Education (GK–12) Program from its start in 1999 through 2012. The guide was written to
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
This pilot project establishes and implements a professional development model with teachers of Native American students by creating a culturally relevant science, technology, engineering and mathematics (STEM) teacher in-service model for 30 grade 4-6 teachers from schools from two nations in Utah. The in-service program relies on community advisory panels, current standards and best practices in science, mathematics and technology education, by implementing engineering and technology education activities as a means of teaching science and mathematics. The goal is to improve teacher preparation in science and mathematics for Native Americans by creating culturally relevant curriculum materials with the help of community advisory panels and providing each teacher participant with at least 100 hours of structured professional development. The long-range goal is to develop an in-service model that can be transported to other Native American nations and schools. STEM and education faculty, community teachers, parents and leaders, as well as, tribal elders are to work together to assure the professional development model and materials are developed in a culturally inclusive manner. The evidence-based outcome of this project is that Native American students effectively learn mathematics and science with the longer-term influence being improvement in student achievement.
DATE:
-
TEAM MEMBERS:
Kurt BeckerJames BartaRebecca Monhardt
Historically, most of the focus of science education has been on pre-college and college level schooling. Although some of the public's interest and knowledge about science is unquestionably shaped by compulsory schooling, given that the average adult spends only a fraction of their life participating in some kind of formal schooling, we argue that the contribution of school-based science learning to the long-term public understanding of science is limited, particularly for the majority of Americans who do not go on to post-secondary schooling. This article shows that the majority of the
In October 2012, the National Science Foundation (NSF) released a new version of the Grant Proposal Guide (GPG) that included significant changes to the review elements and considerations underlying the Merit Review Criteria. This was the first major revision of the Criteria in 15 years. Of particular note were significant changes to the criteria used by panelists, reviewers, and program officers to evaluate a proposal’s broader impacts. To help inform Florida ocean scientists of these changes in anticipation of proposal submission deadlines in early 2013, the Center for Ocean Sciences
This volume explores the integration of recent research on everyday, classroom, and professional scientific thinking. It brings together an international group of researchers to present core findings from each context; discuss connections between contexts, and explore structures; technologies, and environments to facilitate the development and practice of scientific thinking. The chapters focus on: * situations from young children visiting museums, * middle-school students collaborating in classrooms, * undergraduates learning about research methods, and * professional scientists engaged in
Two studies examined how parent explanation changes what children learn from everyday shared scientific thinking. In Study 1, children between ages 3- and 8-years-old explored a novel task solo or with parents. Analyses of children's performance on a subsequent posttest compared three groups: children exploring with parents who spontaneously explained to them; children exploring with parents who did not explain; and children exploring solo. Children whose parents had explained were most likely to have a conceptual as opposed to procedural understanding of the task. Study 2 examined the causal
The aim of the work reported here has been to give an overview of the support that the informal sector provides for learning and engagement with science. In addressing this goal, we have taken the view that engagement with science and the learning of science occur both within and without schools. What is of interest is not who provides the experience or where it is provided but the nature and diversity of opportunities for science learning and engagement that are offered in contemporary UK society. Thus in approaching the work we have taken a systems perspective and looked at informal
In the spring of 1999, the Board of the National Association of Research in Science Teaching (NARST) established an Informal Science Education Ad Hoc committee, co-chaired by Lynn Dierking and John Falk. The Committee's task was to focus on the organization's positioning in regard to out-of-school science education. After 2 years of work, the committee composed a policy statement, included below, that was presented to, and accepted by, the NARST board. The policy statement defines this arena of research, describes a variety of out-of-school environments in which science learning occurs