The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE:
-
TEAM MEMBERS:
Sara LacyRoger TobinNathaniel BrownStamatis VokosRachel ScherrKara GrayLane SeeleyAmy Robertson
This is the final report of the Open University’s RCUK-funded Public Engagement with Research Catalyst, ‘An open research university’, a project designed to create the conditions in which engaged research can flourish. The report describes an evidence-based strategy designed to embed engaged research within the University’s strategic planning for research and the operational practices of researchers. This programme of organisational change was informed by action research, working collaboratively with researchers at all levels across the institution to identify and implement strategies that
DATE:
TEAM MEMBERS:
Richard HollimanAnne AdamsTim BlackmanTrevor CollinsGareth DaviesSally DibbAnn GrandRichard HoltiFiona McKerlieNick MahonyNick Mahony
Family groups comprise a significant percentage of the museum visitor population, and many programs are created specifically for young learners (Borun, 2008). One such learning environment is that of planetaria, where both live and pre-recorded programs are presented to introduce concepts in Earth and Space Science to young children. Pacific Science Center’s Preschool Trip to the Moon live, interactive planetarium program was used as a context for exploring families’ motivations for attending a planetarium show, their reactions to the show, and in particular what children learned from the show
There are a number of places evaluators can share their reports with each other, such as the American Evaluation Association’s eLibrary, the website informalscience.org, and organizations’ own websites. Even though opportunities to share reports online are increasing, the evaluation field lacks guidance on what to include in evaluation reports meant for an evaluator audience. If the evaluation field wants to learn from evaluation reports posted to online repositories, how can evaluators help to ensure the reports they share are useful to this audience? This paper explores this question through
The overall goal of this project is to further develop and test one high-potential current health science research dissemination strategy initially prototyped as part of the SEPA Phase I development of the Museum of Science-s Current Science & Technology Center: updateable interactive digital multimedia displays on current research that can be networked to multiple locations, including science museums, libraries, and student centers. This SEPA project aims to broadly disseminate learning resources on nanomedicine research, capitalizing on the momentum provided by the new NSF-funded Nanoscale Informal Science Education Network (NISE Net), also headquartered at the Museum of Science, Boston, which has plans to place exhibits relating to nanotechnology in 100 museums by 2011. In collaboration with the NISE-Net, the SEPA-funded team will: 1) Research, write, and produce four - six multimedia stories about current nanomedicine research, including elements such as researcher profiles, interpretive animations, interactives exploring the basic science, potential for human benefit, and pathways for further inquiry, 2) Prototype an updateable and networkable software interface and a physical digital display kiosk that can serve audiences in science museums, student centers, libraries, and other public locations, 3) Evaluate the effectiveness of interface and story content and make plans for further development and distribution, and 4) Develop additional content production partnerships with research centers and media.
Field trips to science museums can provide students with educational experiences, particularly when museum programs emphasize scientific inquiry skill building over content knowledge acquisition. We describe the creation and study of 2 programs designed to significantly enhance students' inquiry skills at any interactive science museum exhibit without the need for advanced preparation by teachers or chaperones. The programs, called Inquiry Games, utilized educational principles from the learning sciences and from visitor studies of museum field trips. A randomized experimental design compared
Some of the most intriguing science museum exhibits start with a counter-intuitive outcome, a result that runs counter to visitors' expectations. Although counter-intuitive events often succeed in captivating visitors, they rarely lead to visitor-driven inquiry. The author argues that this is primarily due to two factors: first, for the counter-intuitive effect to be presented reliably and repeatedly, the visitor's interaction must be limited to a narrow set of options. Without multiple options for visitors to explore, extended inquiry is nearly impossible. Second, counter-intuitive outcomes
A team of researchers and practitioners developed a museum program to coach families in the skills of scientific inquiry at interactive exhibits. The program was inspired by the increasing focus on scientific inquiry in schools and the growing number of open-ended exhibit designs in science museums. The development process involved major decisions in two arenas: which inquiry skills to teach, and what pedagogical strategies to use to teach them. After many rounds of refinement based on evaluation with families, the final program, called Inquiry Games, improved visitors' inquiry behavior in
The Massachusetts Linking Experiences and Pathways Follow-on (M-LEAP2) is a three-year longitudinal empirical research study that is examining prospectively how early formal and informal STEM education experiences are related to gender-based differences in STEM achievement-related choices in middle and high school. M-LEAP2 serves as a complement to - and extension of - a prior NSF-funded study, M-LEAP, which was a largely quantitative research study that followed overlapping cohorts of 3rd - 6th grade female and male students for three years. M-LEAP surveyed over 1,600 students, 627 student-parent pairs, and 134 second parents in 8 diverse public schools across Massachusetts. In contrast, M-LEAP2 is a heavily qualitative three-year study using in-depth interviews with a diverse range of 72 of these students and their families to study how formal and informal science experiences shape the students' science-related beliefs, interests, and aspirations as they progress though middle and high school.
In this article Bell, Tzou, Bricker, and Baines describe how formal and informal educational experiences can merge through three case studies of youth engaged in science and technology. The theory of “cultural learning pathways” reframes our understanding of how, why, and where people learn over time and across spaces that have varying cultural values, everyday practices, and hierarchies of privilege and marginalization.
This paper draws on ethnographic data to bring equity to the fore within discussions of tinkering and making. Vossoughi, Escudé, Kong & Hooper argue that equity lies in the how of teaching and learning through specific ways of: designing making environments, using pedagogical language, integrating students’ cultural and intellectual histories, and expanding the meanings and purposes of STEM learning. The authors identify and exemplify emergent equity-oriented design principles within the Tinkering After-School Program—a partnership between the Exploratorium and the Boys and Girls Clubs of San
The adoption of the Next Generation Science Standards means that many educators who adhere to model-based reasoning styles of science will have to adapt their programs and curricula. In addition, all practitioners will have to teach modeling, and model-based reasoning is a useful way to do so. This brief offers perspectives drawn from Lehrer and Schauble, two early theorists in model-based reasoning.