Skip to main content

Community Repository Search Results

resource research Media and Technology
Numeracy is not a luxury: numbers constantly factor into our daily lives. Yet adults in the United States have lower numeracy than adults in most other developed nations. While formal statistical training is effective, few adults receive it – and schools are a major contributor to the inequity we see among U.S. adults. That leaves news well-poised as a source of informal learning, given that news is a domain where adults regularly encounter quantitative content. Our transdisciplinary team of journalists and social scientists propose a research agenda for thinking about math and the news. We
DATE:
TEAM MEMBERS: Jena Barchas-Lichtenstein John Voiklis Laura Santhanam Nsikan Akpan Shivani Ishwar Elizabeth Attaway Patti Parson John Fraser
resource evaluation Professional Development, Conferences, and Networks
This evaluation report highlights finding on the evaluation of the Center for Advancement of Informal Science Education (CAISE), a cooperative agreement with NSF, is a partnership of the Association of Science-Technology Centers with faculty and professionals from the University of Pittsburgh Center for Learning in Out-of-School Environments, Oregon State University, Science Museum of Minnesota, Visitor Studies Association, KQED Public Media, Advisors and other collaborators. CAISE is working to support ongoing improvement of, and NSF investments in, the national infrastructure for informal
DATE:
resource evaluation Professional Development, Conferences, and Networks
This evaluation report highlights findings from the evaluation of the Center for the Advancement of Informal Science Education’s first five years of funding. CAISE, funded through a cooperative agreement with NSF, in its first five years, was a partnership between The Association of Science-Technology Centers, the Institute for Learning Innovation, University of Pittsburgh Center for Learning in Out-of-School Environments, the Visitor Studies Association and other collaborators, who stewarded the development of an Informal Science Education (ISE) resource center to support ongoing improvement
DATE:
resource research Professional Development, Conferences, and Networks
This poster was presented at the 2021 NSF AISL Awardee Meeting. This project conducted a Delphi Study to investigate the question "What do experts think drive better outcomes in climate adaptation workshops?".
DATE:
TEAM MEMBERS: Lara Hansen Marc Stern Jennifer Brousseau Caleb O'Brien
resource research Media and Technology
In July 2020, Dr. Brigid Barron and her team at Stanford University’s Graduate School of Education and the Joan Ganz Cooney Center convened a virtual workshop to mobilize a community of investigators to explore innovative methods for studying family and community learning during the pandemic. Participants included NSF RAPID-COVID grantees from Stanford University, University of Washington, and the University of Michigan. This report summarizes the strategies and insights generated at this workshop so that they may be shared among a wider network of researchers, practitioners, funders, and
DATE:
resource project Professional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.

The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.
DATE: -
TEAM MEMBERS: K.C. Busch
resource project Professional Development, Conferences, and Networks
This project will host a workshop in order to identify and synthesize research findings from NSF awards that addressed the unanticipated effects of the COVID-19 pandemic on STEM teaching and learning. The interruptions from the pandemic had dramatic, widespread effects in education. Across the nation, teachers, students, parents, staff, and school administrators experienced extended school closures and a rapid and unexpected shift to virtual instruction. Although long-term consequences are unknown, early observations revealed deeper disparities in access and opportunity for many students of color. These inequities extend beyond STEM education and include challenges to student’s mental health and wellbeing. In spring 2020, NSF invited researchers to submit educational research proposals in response to this national crisis. Each award has its own dissemination and plans for broader impacts, yet the public is underserved by separate reports published in many different venues. To enable stakeholders to find and discern the most important insights, our research team will aggregate and organize major findings across these projects via a workshop, synthesize key findings, identify unresolved issues, and communicate overall insights to broader audiences.

To synthesize findings, Digital Promise will organize and convene a workshop with NSF awardees who conducted research on the educational impacts of the pandemic. Workshop attendees will participate in answering four questions: (1) What are the major themes and topics across the different NSF awards? (2) How were imperatives to address emerging inequities related to STEM education addressed in research plans and findings? (3) Within each topic or theme, what are the major findings, insights and recommendations for teaching and learning in STEM? (4) Across awardees, what was learned about doing RAPID research during a pandemic, and what are recommendations for improvement when subsequent needs for RAPID research in education arise? Data sources for the synthesis will be collected from project artifacts (e.g., reports, journal articles, practitioner resources, etc.), pre/post-workshop surveys, and workshop outputs from workshop presentations, panel discussions, and small group discussions. Interviews with a subset of workshop attendees will provide insight into what was learned about conducting research during a global pandemic. Data will be codified, categorized, and coded using established qualitative methods. Digital Promise’s broad network of partners and collaborators will achieve broad dissemination and outreach to education stakeholders at both the K-12 and postsecondary levels. This project is jointly funded by the Advancing Informal STEM Learning (AISL) program, the Discovery Research PreK-12 program (DRK-12) program, the EHR Core Research (ECR:Core) program, and the Innovative Technology Experiences for Students and Teachers (ITEST) program.
DATE: -
TEAM MEMBERS: Vanessa Peters Judith Fusco
resource research Professional Development, Conferences, and Networks
This report summarizes findings of an NSF conference grant designed to support the knowledge-building component of the 2019 Inclusive SciComm Symposium (ISCS). Specifically, this document describes symposium participants' motivations for attending the symposium, the symposium's effectiveness in achieving participants' desired outcomes, and participants' attitudes, behaviors, and self-efficacy related to critical dialogue, or difficult conversations across difference. The report also summarizes participants' perceived needs, challenges, and opportunities for advancing inclusive, equitable, and
DATE:
TEAM MEMBERS: Sunshine Menezes Hollie Smith Kayon Murray-Johnson Hannah Trautmann Mehri Azizi
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Informal/Formal Connections
HBCUs are critical to producing a diverse and inclusive workforce as they graduate a disproportionate number of African American future STEM workers and STEM leaders. Although the National Science Foundation is fully committed to diversity and inclusion, there has been little research to determine why Historically Black Colleges and Universities are not fully participating in the NSF STEM educational research opportunities. The project will investigate the challenges, needs and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF). Participants will be recruited from 96 HBCUs that are eligible to apply for such funding and will include the wide range of college and university administration and faculty that are involved in the preparation of research projects and related applications for research funding. The investigation will focus primarily on the Division of Research on Learning in Informal and Formal Settings (DRL) within NSF. The investigation will: 1) determine the submission rate and funding success rate of HBCUs within the DRL funding mechanisms; 2) determine why a greater proportion of HBCUs are not successful in their applications of research or do not apply; and 3) determine what factors, such as institutional support, research expertise, and professional development, could lead to a larger number of research proposals from HBCUs and greater success in obtaining funding. The project has the potential to have significant influence on the national educational and research agenda by providing empirical findings on the best approach to support and encourage HBCU participation in DRL educational research funding programs.

This exploratory research project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs. The project has the following research questions: (1) What factors discourage participation of HBCUs in the DRL funding mechanisms and what are the best practices to encourage participation? (2) What approaches have been successful for HBCUs to obtain DRL funding? (3) What dynamic capabilities are necessary for HBCU researchers to successfully submit STEM proposals to NSF? (4) What changes would be helpful to reduce or eliminate any barriers for HBCU applications for DRL educational research funding and what supports, such as professional development, would contribute to greater success in obtaining funding? Participants will be recruited from the 96 eligible HBCUs and will include both individuals from within the administration (e.g., Office Sponsored Programs, Deans, VP, etc.) as well as from within the faculty. The research will collect variety of quantitative and qualitative data designed to support a comprehensive analysis of factors addressing the research questions. The project will develop research findings and recommendations that are relevant to faculty, administrators, and policymakers for improving HBCU participation in research funding opportunities. Results of project research will be widely disseminated to HBCUs and other Minority Serving Institutions (MSIs) through a project website, peer reviewed journals, newsletters, and conference presentations.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST), the Advancing Informal STEM Learning (AISL), and the Discovery Research PreK-12 (DRK-12) programs. These programs which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' and general public knowledge and interest in science, technology, engineering, and mathematics (STEM).
DATE: -
TEAM MEMBERS: Cynthia Trawick John Haynes Triscia Hendrickson Terry Mills
resource research Media and Technology
This collaborative research project between KQED, a public media organization serving the San Francisco Bay Area, Texas Tech University and Rockman et al conducted research to study how best to provide effective COVID-19 science news and social media content for young adult audiences. To start the work, four “Knowledge Gap” studies – Twitter Misinformation, Mask Wearing Messaging, Germ Knowledge and Conceptual Mapping – as well as social media testing were conducted to address our research question: How could COVID-19 coverage be designed to best inform, engage and educate millennials and
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Joanna K. Huxster