Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource project Informal/Formal Connections
This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.

The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.

This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.

Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
DATE: -
TEAM MEMBERS: Maria Ong Apriel Hodari
resource project Professional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.

The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.

This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
DATE: -
resource research Exhibitions
The United Nations Strategic Plan for Biodiversity 2011-2020 is a key initiative within global efforts to halt and eventually reverse the loss of biodiversity. The very first target of this plan states that "by 2020, at the latest, people are aware of the values of biodiversity and the steps they can take to conserve and use it sustainably." Zoos and aquariums worldwide, attracting more than 700 million visits every year, could potentially make a positive contribution to this target. However, a global evaluation of the educational impacts of visits to zoos and aquariums is entirely lacking in
DATE:
TEAM MEMBERS: Andrew Moss Eric Jensen Markus Gusset
resource project Professional Development, Conferences, and Networks
The National Science Foundation (NSF) Climate Change Education Partnership Alliance (CCEPA) is a consortium made up of the six Phase II Climate Change Education Partnership (CCEP-II) program awardees funded in FY 2012. Collectively, the CCEPA is establishing a coordinated network devoted to increasing the adoption of effective, high quality educational programs and resources related to the science of climate change and its potential impacts. The establishment of a CCEPA Coordination Office addresses the need for a coordinating body that leverages and builds upon the CCEPA projects' individual initiatives. The CCEPA Coordination Office facilitates interactions to leverage a successful network of CCEP-II projects and individuals engaged in increasing climate science literacy. The efforts of the Coordination Office advance knowledge and understanding of how to effectively network related, but different, projects into a cohesive enterprise. The goal is to coordinate a functional network, where the whole is greater than the sum of the parts.

The CCEPA Coordination Office at the University of Rhode Island is helping to move the CCEPA network forward on a number of key initiatives that strengthen it, reduce duplication, and enhance its overall impact. An important role of the Coordination Office is the facilitation of the transfer of best practices between projects. An effective network forges collaborations and establishes communities of practice through network working groups, building intellectual capital network-wide. The CCEPA Coordination Office has a key role in assisting the CCEPA project PIs and staff to disseminate the results of their work. Partnerships with other relevant societies and organizations assist the Coordination Office in identifying opportunities and synergies for sharing, disseminating, and leveraging network products as well as best practices that emerge as Earth system science education models and tools are evaluated. This endeavor broadens the collective impact of the individual projects across the country.
DATE: -
TEAM MEMBERS: Gail Scowcroft
resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource project Professional Development, Conferences, and Networks
Achieving the Future of Education and Engagement is focused on the 21st Century Teacher Academy. 21CTA is a unique Educator Professional Development (EPD) two-week residential workshop designed to immerse teachers in best practices and methodologies to develop and implement real-world, Project Based Learning (PBL) curricula using NASA missions. Participating teams of STEM teachers from across the Nation are invited to Ames Research Center in order to fully experience the center's world-class facilities and researchers.

The program's intensive structure achieves the following goals: Improve educational opportunities for teachers and students, deepen teacher understanding of implementing 21st century skills using NASA centric PBL, and create an active Professional Learning Community (PLC) through NASA Ames. In order to meet the program goals, participants will: 1) Successfully design and construct PBL based lessons using NASA content, 2) Integrate NASA missions, resources and programs into lesson plans and resource documents, 3) Demonstrate a deep knowledge of NASA aeronautics research by integrating several different topics into their curricula, 4) Actively participate in NASA outreach (media networking), with students to inspire STEM participation, 5) Conduct a NASA Themed PBL using train-the-trainer module to other educators within the first year of participating in 21CTA.

At the conclusion of the workshop each participant team produced: At least one complete NASA themed PBL curricula, including no fewer than 3 NASA themed PBL activities; Supplemental multi-media presentations and tools to accompany, and/or be integrated into, the main PBL curricula, and; Submitted lessons, content, and best practices on the Professional Learning Community (PLC) website.
DATE: -
TEAM MEMBERS: Brendan Sanborn
resource project Professional Development, Conferences, and Networks
The goals of this workshops project are: (1) to provide collaborative professional development opportunities for 24 early professional social science researchers, and science writers and communicators, and (2) to foster a stronger and durable "community of practice" between the fields of science policy research and science communications for the purposes of helping the general public better understand and become engaged with major issues of science and innovation policy. In addition to the PI and co-PI, involved in the work will be: twelve science policy scholars and twelve science communications professionals (writers, bloggers, museum educators, and others); mentors; editors of major science publications; several guest observers from university writing programs around the country; and graduate students who will help document and video record the activities. Project activities include a suite of opportunities: two, four-day workshops; mentorship support; publication in hard copy and online of their articles in a special edition of Creative Nonfiction magazine; and public engagement experiences at Science Cafes around the country. These workshops and accompanying activities will continue to develop a strong foundation for the establishment of nascent collaborations of science policy scholars, science communicators, and informal science education professionals, whose partnerships should position them better to inform and engage the public on important science policy issues of our times.
DATE: -
TEAM MEMBERS: Lee Gutkind David Guston
resource project Professional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE), a cooperative agreement with the National Science Foundation Advancing Informal STEM Learning (AISL) program, is a partnership of the Association of Science-Technology Centers with faculty and professionals from the University of Pittsburgh Center for Learning in Out-of-School Environments (UPCLOSE), Oregon State University (OSU), the Great Lakes Science Center, KQED Public Media, advisors and other collaborators. CAISE works to support and resource ongoing improvement of, and NSF investments in, the national infrastructure for informal Science Technology Engineering and Mathematics (STEM) education. CAISE's roles are to build capacity and support continued professionalization for the field by fostering a community that bridges the many varied forms in which informal STEM learning experiences are developed and delivered for learners of all ages. To that end, CAISE activities also include: creating field-driven evidence databases about the impacts of informal STEM education; facilitating federated searches of those databases; furthering dialogue and knowledge transfer between learning research and practice; working to enhance the quality and diversity of evaluation knowledge and processes; and helping STEM researchers improve their efforts in informal STEM education, outreach and communication. For Principal Investigators (PIs) and potential PIs, CAISE provides resources that can assist in the development of evidence-based proposals. It also facilitates and strengthens networks through PI meetings, communications, and other methods that encourage sharing of deliverables, practices, outcomes and findings across projects. For the AISL Program at NSF, CAISE is assisting program officers in understanding the portfolio of awards, identifying the portfolio's impacts in key areas, and integrating the program's investments in education infrastructure.
DATE: -
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Public Programs
OUTSIDE: Over Under and Through: Students Informally Discover the Environment will focus on conducting a pilot study of our informal environmental education nature program designed for underrepresented middle school students in Mississippi. We have partnered with the University of Southern Mississippi's (USM) well-established Biological Sciences Learning Center (BSLC) and newly developed Lake Thoreau Environmental Center (LTEC), the Mississippi Museum of Natural Science and the Hattiesburg Public School District (HPSD). We are focused on reaching two target populations of participants: future naturalists and underrepresented middle school students. During this pilot, we are training volunteer naturalists to lead engaging, inquiry-driven informal environmental education programs designed to immerse middle school students in nature. We have developed a training program for volunteer naturalists and captured patterns in learning and interactions between students and naturalists during OUTSIDE programming.
DATE: -