This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS:
Children's Museum of PittsburghInstitute of Museum and Library ServicesPeter Wardrip
This project team will develop and test a prototype an online platform to facilitate engineering project challenges within K–12 classrooms across many schools. The prototype will include a content management platform to enable a high volume of challenges for students to conduct projects on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. In a pilot study with one school, the researchers will examine whether the prototype functions as planned, whether teachers are able to incorporate challenges within instruction practice, and if multiple classrooms are able to participate in a challenge and produce a product that in response to a challenge.
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners).
Appendix includes logic model.
Purpose: This project team will fully develop and test an open online platform that posts student-led engineering project challenges for Kindergarten to grade 12 classrooms. Research demonstrates that improved attitudes towards engineering in elementary and middle school are imperative to increase the pursuit of STEM degrees and careers. This project intends to address a shortage of tools and curricula in K-12 engineering today, in order to meet the learning objectives new the Next Generation Science Standards and to engage students in STEM.
Project Activities: During Phase I, (completed in 2016), the team developed a prototype, including a content management platform to host challenges on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. At the end of Phase I, researchers completed a pilot study with 100 students and two teachers. Results demonstrated that the prototype operated as intended, that students were highly engaged with challenges on the platform, and that teachers were able to incorporate challenges within instructional practice. In Phase II, the team will refine the landing page, further develop the system architecture to accommodate a larger number of challenges, and upgrade the teacher portal to build capacity for the effective integration into instructional practice. After development is complete, the research team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and promise of the platform to improve learning. The study will include 40 high school classrooms with a minimum of 25 students per class. Half of the classrooms will be randomly assigned to use the platform to conduct a challenge and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of students' science and engineering self-assessments, which measure ability to engage in science and engineering practices such as asking questions, modeling, planning and carrying out investigations, analyzing data, and constructing explanations, as well as content-specific measures depending on the specific challenge with which classes engage.
Product: The project team will develop a platform that will facilitate design challenges in K-12 classrooms across STEM academic topics and career paths within the field of engineering. The platform will enable classes to post their projects to the site and for other classes around the country to participate in the project. Each challenge (and the associated education resources curated for that challenge) will be publicly displayed on the Future Engineers platform and offered free for student participation and classroom facilitation. The content management system will be developed to enable the platform to host a high volume of challenges simultaneously and will allow for a diverse array of student-generated submissions. The platform will also include teacher resources to support the alignment of game play with learning goals and to support implementation.
The Common Core's higher academic standards are forcing schools into a false dichotomy of reducing playtime in favor of more time to learn math and literacy. But play can deepen learning even in core content areas.
In this chapter, we explore making as a learning process in the context of a museum-based maker space designed for family participation. In particular, we focus on young children, and their adult learning partners, as an important demographic to consider and for which to design making environments and experiences. Importantly, we take a close look at the evolving role of museum educators in supporting young children's meaningful participation in making as an informal learning process. Through the presentation of a single case of a child's making in the museum, we identify key factors that
In this essay, Shirin Vossoughi, Paula Hooper, and Meg Escude advance a critique of branded, culturally normative definitions of making and caution against their uncritical adoption into the educational sphere. The authors argue that the ways making and equity are conceptualized can either restrict or expand the possibility that the growing maker movement will contribute to intellectually generative and liberatory educational experiences for working-class students and students of color. After reviewing various perspectives on making as educative practice, they present a framework that treats
The Science Museum of Minnesota (SMM) leverages a professional educator team (“instructors”) comprised of about two dozen individuals who facilitate both formal and informal educational programming in the museum, in K–12 classrooms, and at community-based sites. The experienced instructors of SMM’s Lifelong Learning Group bring innovative programs to both students and their teachers. Recognizing that long-term experiences can have a profound impact on students and teachers, SMM works to develop multiyear relationships based on collaboration. This article focuses primarily on SMM’s well
Maker Corps is a program delivered by the Maker Education Initiative (Maker Ed) to increase organizational capacity to develop and deliver maker programing. Since its inception in 2013, the program has grown to support over 100 organizations by providing professional development, connections to a community of other maker educators and individualized support. Over time the program elements have changed in response to feedback from participants, collaboration with evaluators and shifts in focus for Maker Ed’s goals. In the spirit of maker education – tinkering, observing, responding, iterating –
As a leader in the science museum field, the New York Hall of Science (NYSCI) is a destination for hands-on, interactive exhibitions and innovative programs. NYSCI’s Design-Make-Play (DMP) pedagogical approach to STEM learning recognizes that what is essential is not only the content—what is being taught—but how teaching and learning are imagined through the curriculum. This commitment to practice builds off of interest-based learning research, which emphasizes that all learners should feel a sense of efficacy and possibility. The hallmarks of this approach include deep personal engagement
DATE:
TEAM MEMBERS:
Amanda SolarshGina TesorieroMichaela LabrioleTara Chudoba
Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.
Technical
This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE:
-
TEAM MEMBERS:
Mohamed MusaviVenkat BhethanabotlaCary JamesVemitra WhiteLola Brown
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.
The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE:
-
TEAM MEMBERS:
Steven StochajPatricia SullivanLuis Vazquez