Many of the nation's poorest-performing schools are in rural areas. Anecdotal information suggests participation in and access to informal STEM learning opportunities in Mississippi - a state with among the lowest STEM-career readiness in the nation - is unequally distributed among geographic regions and sociocultural environments. Informal learning programs in science, technology, engineering, and math (STEM) have the potential to reach into rural communities and provide a bridge to greater STEM access, literacy, and career readiness. Building Bridges: Broadening the STEM Conversation in Rural Mississippi will initiate a dialog among key practitioners, experts, and stakeholders in informal STEM learning focused on identifying the causes of and solutions to STEM inclusion barriers among rural youth. The goal of this Advancing Informal STEM Learning (AISL) Conference Project aligns with NSF's mission to promote the progress of science for all segments of society, including rural K-12 students. Solutions to STEM disconnections identified in Mississippi through this project will have relevance and transferability to rural communities across the southeastern US, given regional commonalities in socioeconomic, educational, and cultural factors.
This project aims to conduct an interactive and participant-based summit that brings together key leaders and experts from informal science learning institutions and organizations, STEM-related agencies and industries, and rural community groups to improve methods for linking informal STEM learning opportunities with rural, K-12 students. The goal of the project is to identify the common barriers and explore potential solutions to informal STEM participation by rural K-12 students in Mississippi. With the guidance of a steering committee, a Mississippi STEM Consortium will be formed and convened at a 2019 Mississippi Informal STEM Consortium Summit with the following goals: (1) Identify broad barriers to informal STEM learning in diverse and rural K-12 populations. (2) Define crucial and transformative elements in informal STEM programs deemed successful in rural student recruitment and engagement. (3) Improve collaborative networking to enhance the role of informal education in building statewide STEM capacity. These objectives will be met by developing, implementing, and evaluating statewide needs-assessment surveys and a two-day summit of Consortium members. The project evaluator will ensure process and outcome evaluations are properly conducted throughout the entire course of the project to inform planning, promote iterative improvement, monitor progress, and ensure achievement of desire objectives. With regards to broader impacts, it is anticipated that outcomes from this project will have impact within and beyond Mississippi's borders. Expected project outcomes include scientific manuscripts on needs-assessment surveys, modified approaches to existing informal STEM activities, future research on identified informal STEM participation barriers and mitigation measures, new collaborations that broaden participation and expand future research, and a draft Informal STEM Strategic Plan for Mississippi. Varied dissemination methods will be used to communicate the findings broadly.
This conference project is funded by the AISL program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Leslie BurgerSarah LeeKatherine EcholsVemitra White
This report, from the "Tinkering EU: Building Science Capital for All" project, provides a theoretical rationale for understanding the relationship between Tinkering as a pedagogical approach, students’ individual science capital, and inclusive STEM teaching approaches. By exploring the relationship between these three areas, it invites professionals to reflect on the ways in which Tinkering can be used a teaching tool for building science capital.
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).
Coordinator: National Museum of Science and Technology Leonardo da Vinci
Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
Supported by the National Science Foundation, the Global Soundscapes! Big Data, Big Screens, Open Ears project employs a variety of informal learning experiences to present the physics of sound and the new science of soundscape ecology. The interdisciplinary science of soundscape ecology analyzes sounds over time in different ecosystems around the world. The major components of the Global Soundscapes project are an educator-led interactive giant-screen theater show, group activities, and websites. All components are designed with both sighted and visually impaired students in mind. Multimedia
This article discusses how camp professionals are taking a greater interest in the concept of allyship, a process of unlearning and re-evaluating whereby those in positions of privilege attempt to adopt a stance of solidarity with marginalized groups of people. It includes an annotated list of Indigenous Instructional Programming, which aims to build awareness of programs that can aid camp professionals seeking to build intercultural competency among staff groups and, by extension, work toward a larger goal of determining whether or not indigenous traditions still merit a place at camp.
In this literature review, we seek to understand in what ways aspects of computer science education and making and makerspaces may support the ambitious vision for science education put forth in A Framework for K-12 Science as carried forward in the Next Generation Science Standards. Specifically, we examine how computer science and making and makerspace approaches may inform a project-based learning approach for supporting three-dimensional science learning at the elementary level. We reviewed the methods and findings of both recently published articles by influential scholars in computer
DATE:
TEAM MEMBERS:
Samuel SeveranceSusan CodereEmily MillerDeborah Peek-BrownJoseph Krajcik
In this article, The North American Association for Environmental Education (NAAEE) shares the programs and publications it developed to advance E-STEM—the integration of environmental education into STEM.
DATE:
TEAM MEMBERS:
Kristen Kunkle
resourceresearchMuseum and Science Center Programs
Learn about how a university-based teacher preparation program, public schools, and local science-focused museums implement an ecological approach to STEM learning in Chicago.
DATE:
TEAM MEMBERS:
Daniel BirminghamLara SmetanaHeidi RouleauJenna Carlson
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.
In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).
Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We provide results of a qualitative research study conducted with the Mathematics, Engineering, Science Achievement (MESA) program, an informal learning environment that has proven to be effective in recruiting, retaining and encouraging
DATE:
TEAM MEMBERS:
Cameron DensonChandra Austin StallworthChristine HaileyDaniel Householder
As the maker movement is increasingly adopted into K-12 schools, students are developing new competences in exploration and fabrication technologies. This study assesses learning with these technologies in K-12 makerspaces and FabLabs.
Our study describes the iterative process of developing an assessment instrument for this new technological literacy, the Exploration and Fabrication Technologies Instrument, and presents findings from implementations at five schools in three countries. Our index is generalizable and psychometrically sound, and permits comparison between student confidence
DATE:
TEAM MEMBERS:
Paulo BliksteinZaza KabayadondoAndrew P. MartinDeborah A. Fields
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS:
Cheryl JuarezVerónika NúñezExploratorium