Parents exert a strong influence on the development of foundational science, technology, engineering, and mathematical (STEM) skills in early childhood. This influence occurs, in large part, through playful parent-child interactions and conversations that expose children to mathematical and spatial concepts in interesting and useful ways. Prior research suggests that guided play is effective in building the STEM knowledge, reasoning, and interests of preschool children. Guided play requires adults to strategically present and scaffold STEM play in ways that support child initiative and
DATE:
TEAM MEMBERS:
Karen BiermanLynn LibenJessica MenoldMeg SmallScarlett MillerJennifer Connell
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
Parents exert a strong influence on the development of foundational science, technology, engineering, and mathematical (STEM) skills in early childhood. This influence occurs, in large part, through playful parent-child interactions and conversations that expose children to mathematical and spatial concepts in interesting and useful ways. For example, parents of preschool children are often encouraged to use puzzles, board games, and construction activities to foster children's spatial thinking and early math skills. However, mastery-oriented toys like these typically elicit highly structured interactions, with parents directing children to follow explicit step-by-step instructions and game rules. Although this kind of parent-directed play can build content knowledge in STEM, it does little to encourage the kind of intrinsically-motivated discovery, generative collaboration, and creative problem-solving skills that support STEM education and attainment. This research in service to practice project seeks to understand how parents can play with their preschool children in ways that build children's STEM skills while also supporting children's social-emotional skills. As such, this research has the potential for advancing knowledge on effective strategies for enriching informal learning opportunities in under-resourced and sparsely populated communities where access to children's museums and other informal learning institutions is limited. Over a period of three years, approximately 135 children and parents from a rural Appalachian community are expected to participate in this research, which is organized into three phases. During Phase 1, human-centered design processes will be used to develop and refine play guides and parent scaffolds that promote productive pretend play, which is characterized by joyful and creative problem-solving and rich parent/child conversations featuring mathematical and spatial concepts and reasoning. In Phase 2, measures will be developed and validated to operationalize and code this kind of productive parent-child play and play guides will be tested and refined in a local children's museum. In the final phase, a formal field test will investigate the feasibility and acceptability of outreach programming involving the use of play guides over time. Pre-, mid-, and post-intervention measures will estimate program impact on child STEM and social-emotional skill acquisition, relative to a comparison group. An expected outcome of the project will be research-based educational materials that illustrate and support pretend play in ways that generate spatial and mathematical thinking and parent/child conversations. These materials will will be made available to families and informal learning practitioners. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Karen BiermanLynn LibenMeg SmallJessica Menold
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.
The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE:
-
TEAM MEMBERS:
Joe HastingsArmelle CasauObenshain KorenKersti TysonAngelo Gonzales
PEEP and the Big Wide World/El Mundo Divertido de PEEP is a bilingual, NSF- funded public media project that uses animation, live-action videos, games, mobile apps, hands-on science activities to motivate preschool-age children to investigate the world around them. Online, PEEP extends children’s science and math learning with a mobile-friendly website that offers games, videos, and hands-on activities, as well as a collection of 15 apps. PEEP is also reaching children in preschool classrooms and family/home childcare settings via the PEEP Science Curriculum, which provides resources for a
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Using a combination of Peg + Cat, an animated math-based PBS television series for preschoolers; professional development (PD); family engagement resources; and the existing infrastructure of a regional Head Start system, this project aims to increase participating educators’ and families’ comfort and engagement with mathematics.
The animated series PEEP and the Big Wide World (PEEP), developed by WGBH Boston, is designed to teach science and math to children aged three to five years old. WGBH recently completed a total redesign of the PEEP website that was intended make the site more accessible to Spanish-speakers, more supportive of extended informal science and math exploration, and more functional for users of tablets and mobile devices. This work included:
• The transformation of PEEP into a fully dual language website via the translation of all games and website text into Spanish and the debut of a new Spanish
This poster from the 2014 AISL PI Meeting presents Peg + Cat, a research and development project that explores the mechanisms that initiate and support innovation in early childhood education, especially by combining informal learning via public media and technology with teacher and family interactions to maximize children's math learning.
A midpoint progress poster on the Sparks of Discovery Project which connects UW-Madison NSF researchers to produce interdisciplinary science investigations that will be/have been implemented in a number of settings, including participants from underrepresented groups in science. Wisconsin Alumni Research Foundation (WARF) along with the Morgridge Institute for Research staff support the project and implement the education programs at the Wisconsin Institutes for Discovery. This poster was presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS:
University of Wisconsin, MadisonTravis Tangen
The New York Hall of Science and Community School District #24 request $46,744 for a planning grant whose goal is to empower parents by bringing informal science and math education experiences to create a working team of parents, teachers, and museum staff to underserved, ethnically diverse students in their formative years, and their families. A major objective is to develop a framework for a science resource kit for home use by parents and children in grades K-3, and related parent training. The target audience is low income, minority, recently immigrated parents, with little to no involvement in their children's education. Parents from the target audience will serve on the Planning Team. The function of the kits is to provide exciting, intergenerational, exploratory experiences in math and science that are related to the school curriculum. Each kit will be designed to be completely portable and will appear to be a large trunk with wheels. Contents may include: a laptop-size computer; hand lenses and two small microscopes; diffraction gratings and flourescent sources; ramps and balls; mirrors, lenses and other optics.
The Developmental Studies Center is supporting the active involvement of parents in their children's mathematical development, helping parents understand more about how their children learn mathematically and socially, and increasing the likelihood that children will discuss mathematics with an adult who is significant in their lives. The first phase of this project develops, pilot tests, and evaluates a Homeside Math resource book for each grade level, K-2, with activities teachers can send home to foster positive interaction about mathematics between parents and their children. These activities are related to exemplary school curricula, particularly those developed with NSF support. The next phase develops a limited number of additional activities to add to the Homeside Math collection to be published as Community Math. Community Math is a resource book for youth workers with activities that foster mathematical discussions between children ages 5-8 and a significant adult and can be used in a variety of community organization settings and sent home for family use. Workshops are developed for parents, teachers, and youth workers to strengthen their knowledge of child-centered instructional strategies, meaningful activities, and how children develop mathematically and socially. And facilitator workshops are developed for parents, teachers, and youth workers to enable them to lead workshops for parents.
The New Mexico Museum of Natural History and Science proposed to develop an outreach science and mathematics program with a parent involvement and teacher enhancement professional development component. The goals of the project are as follows: (1) to involve parents in their children's education; (2) to promote a positive attitude on behalf of parents and students toward science and mathematics; (3) to increase teachers' level of comfort in teaching science; and (4) to enhance teacher's confidence in the hands-on approach as an effective method for teaching science. The objectives for the parent component of this project are: acquaint parents with the national and state science education goals and standards; introduce parents to activities that can be done at home with children; and provide families with materials and activity sheets that can be used at home. The objectives for the teacher component of this project are: (1) to provide teachers with opportunities for increased communication with parents about science literacy for children; (2) provide professional development for teachers on the use of hands-on science activities in the classroom; and (3) to providing bilingual activity guides and kits containing materials to encourage science learning. The methods for implementing this project will be varied according to the needs of the target audiences. Parents and children will be engaged through parent workshops and multi-aged children's activities conducted at the museum by experienced science educators. The professional development for teachers' component of this project will include an extensive summer workshop, on-going training/ planning sessions during the school calendar year and session on the uses of the bilingual teaching manuals. The cost sharing for this NSF award is 46.7% of the total project cost.