In December of 2019, TERC and the University of Notre Dame convened 21 early childhood reading, family learning, and informal STEM education experts to explore the role of children’s fiction books as a tool for supporting STEM learning with young children and their families. Through the discussions, the group developed a series of recommendations for future research and practice, with a particular focus on integrating diversity and equity perspectives into the use of storybooks.
In December of 2019, TERC and the University of Notre Dame convened a group of 21 early childhood reading, family learning, and informal STEM education experts to explore the role of children’s fiction books as a tool for supporting STEM learning with young children and their families. Participants included educators and researchers from across the country representing a broad range of learning contexts, professional roles, audience focus areas, and STEM discipline expertise. Through the discussions, the group developed a series of recommendations for future work, with a particular focus on
Across the United States, individuals, organizations, and communities are wrestling with a wide array of challenging and persistent science, technology, engineering, and mathematics (STEM)-related problems. A few examples include ensuring more equitable access to STEM careers; building capacity for rural libraries to support STEM learning; and supporting greater cyber literacy among youth. The good news is that thousands of individuals, organizations, and communities are coming up with great ideas for how to confront these problems; many of them supported by the NSF. Unfortunately, most will encounter significant roadblocks to success along the way, but not because of bad ideas. Most change agents falter along the lengthy and often convoluted pathway between idea and successful execution because they bump up against barriers they do not expect or know how to overcome. This Pilot and Feasibility Study will create Learning Solutions, a multi-platform program designed to support those people and entities engaged in work that cultivates the public's understanding of, engagement with, and interest in STEM fields and STEM-related information. First, the project will systematically identify the real, but often unspoken issues that individuals, organizations, and communities run into as they work to bring about significant and impactful STEM-related change. Then, the project will assemble, curate, and make digitally available a collection of tools, resources and strategies designed to help someone understand and resolve these kinds of issues if and when they arise. By better understanding the experiences of change agents, the challenges they face, and the creative learning solutions they enact, this project will ensure that more change agents successfully access the learning know-how they need, when they need it, in curated, easy-to-digest formats. This award is funded by the Advanced Informal STEM Learning program which contributes to STEM engagement and literacy, workforce development, and educational success via supporting new approaches to and evidence-based understanding of STEM learning in informal environments. Learning Solutions will build capacity and will help more professionals successfully bring more good ideas to fruition.
The target audience for this Pilot & Feasibility phase of Learning Solutions will be STEM professionals working at the intersection of STEM and society across diverse sectors. It will focus on change agents -- individuals who want to be or who already are engaged in community-based, action-oriented STEM-related change projects, whether acting on their own, within an organization, or as part of a broader community of organizations. To achieve the goal of making STEM-related change easier to accomplish, Learning Solutions will implement a multi-step process. With input from five Critical Advisors, 20 Key Informants, and ultimately hundreds of change agents, project staff will: 1) Utilize an iterative process of in-depth interviews and broadly disseminated surveys to identify the major understandings, skills and processes that current and past STEM-related change agents have experienced as impediments to their success; 2) Determine how best to describe and categorize these issues across diverse problem spaces; 3) Select twelve issues, based on which are the most frequently mentioned and/or perceived to be the most critical or challenging, and research and curate the best and most authoritative resources responsive to these dozen issues; and finally, 4) Use a variety of platforms (e.g., social media, traditional media, digital and in print publications, podcasts, panels, and group presentations) and utilization metrics to ensure effective digital delivery of potential solutions to the selected issues. By the project's end, we will have identified some of the key challenges the STEM-related change agents who work in communities across America regularly encounter, as well as the feasibility of developing a mechanism for helping those change agents discover preexisting and readily accessible resources to assist them in resolving those challenges.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
John H FalkElysa CorinStacey Sheehan
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this pilot and feasibility study is to increase participation in informal STEM learning in rural Idaho through Stories of Fire, a program based on personal narratives of wildland fire. Idaho is a rural state, with an average population of just 19 people per square mile, the fourth lowest population density in the United States. The state is experiencing increasingly severe wildfire, and effective responses to such environmental change require a better understanding of the underlying science. Contextualizing science learning, making connections between everyday lives and a sense of place can engage learners and bring about a better understanding of wildfire. This project will bring together a science communicator, a narratologist, a fire ecologist, and a specialist on emotions and public lands. They will work collaboratively with informal educators based in rural areas of Idaho underrepresented in STEM fields. Rural areas are rich in knowledge based on years of cumulative observations, cultural beliefs, and practices shared through community networks. This project builds on these rural assets while addressing the challenges rural populations face. The project addresses broadening participation in STEM through narrative practices that encourage more diverse ways of knowing, being, and representing science.
This research study will explore: 1) what mechanisms of narrative (storytelling) most effectively integrate individuals? personal experiences and accurate STEM content in fire science communication, and 2) what audience-centered approaches best facilitate narrative approaches to informal STEM learning. This project engages four levels of participants over four phases of research and programming: 1) The research team will interview and analyze the narratives of 40 Frontliners (e.g., wildland firefighters and evacuees) from the inland Northwest region with first-hand experience with wildfire. 2) They will conduct a narrative workshop to train 20 informal STEM Educators from across the state on audience-centered approaches that facilitate participant storytelling about fire. 3) Educators will pilot their own narrative-based informal science learning programs with program participants in their rural home communities across the state, 4) A professional podcaster will create two podcasts modeled on our research findings for public audiences reached through media.
This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Teresa CohnLeda KobziarJennifer LadinoErin James
This RAPID project will study connections between children's hygiene habits and learning about science, such as the science of disease transmission. It builds upon findings from the investigator's prior research of parent-child interactions observed in children's museums and will extend this research to home settings. This research will focus on understanding how goal-setting, whether it is parent-directed, child-directed, or jointly-directed, affects children's engagement with a handwashing activity and their subsequent learning about handwashing behavior and preventing the spread of disease. More specifically, the intent is to examine how goal-setting during an interactive demonstration between parents and children relates to children's recollection of the activity and their handwashing behavior afterwards. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
During a pandemic, it is vital that children establish good hygiene habits and understand the importance of handwashing for the prevention of disease transmission. What is most important is that young children wash their hands frequently and follow good hygiene habits, such as using soap, when doing so. This study examines the role parents might play in engaging children to wash their hands. The project team has developed a short 10 minute intervention that parents and children can participate in while using everyday household items. Utilizing remote technology, parents and children will be guided through this intervention while video recording their behavior. Families will be presented with a structured activity for parents and children to participate in together. This activity will be focused on how handwashing, and particularly the use of soap during handwashing, helps prevent the spread of germs. Parent-child interactions will be coded using schemes for goal setting that the investigator developed in prior work. Directly after their participation and one week later, children will be asked to reflect on the activity to understand what they remember about it, and to understand whether they have encoded the importance of handwashing for preventing the transmission of disease. Parents will also be asked to track their children's handwashing to see whether aspects of these reflections, as well as individual differences in how parents and children interact during the activity, promote better engagement with handwashing. The data generated will allow researchers to develop best practices for interventions centered on children's handwashing and the prevention of disease transmission. Knowing such practices is critical for reintegrating children into social settings such as schools and children's museums.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.
Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Teon EdwardsJodi Asbell-ClarkeJamie LarsenIbrahim Dahlstrom-Hakki
Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
With the world in the midst of the COVID-19 pandemic, families are seeking trusted and engaging sources of scientific information to help their children understand prevention, transmission, treatment, and many other topics related to COVID-19 in an effort to ease children’s fears. The goal of our NSF-funded RAPID research study is to understand how children’s science podcasts, as well as other educational products, can provide families with information to help ease children’s worries during a pandemic by increasing children’s understanding of pandemic-related science concepts, empowering
With the world in the midst of the COVID-19 pandemic, families are seeking trusted and engaging sources of scientific information to help their children understand prevention, transmission, treatment, and many other topics related to COVID-19 in an effort to ease children’s fears. The goal of our NSF-funded RAPID research study is to understand how children’s science podcasts, as well as other educational products, can provide families with information to help ease children’s worries during a pandemic by increasing children’s understanding of pandemic-related science concepts, empowering
Learning to See, Seeing to Learn is a National Science Foundation-funded project to develop www.macroinvertebrates.org, a digital observation tool and set of informational resources that can supplement volunteer biomonitoring trainings and improve aquatic macroinvertebrates identification. Project researchers are interested in how trainers and volunteers use the tool, as well as how training that incorporates the tool impacts volunteers’ confidence in and accuracy around aquatic macroinvertebrates identification. In November 2018, project partner, Stroud Water Research Center, conducted a
This webinar was presented by the NSF Education and Human Research (EHR) Department to describe a current funding opportunity, the EHR Core Research (ECR) program.
DATE:
TEAM MEMBERS:
Earnestine EasterGregg SolomonJolene Jesse
The Brains On! exploratory research study was guided by three overarching research questions:
Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts?
How are Brains On! listeners using the podcast and engaging with its content?
What kinds of impacts does Brains On! have on its audiences?
These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the