This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Designing Our World (DOW) empowers and promotes girls’ pursuit of engineering careers by cultivating networks of community stakeholders and engaging girls with experiences that illuminate the social, personally relevant and altruistic nature of engineering.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Head Start on Engineering is a pathways project focused on developing the foundations of a long-term, community-based research program to (a) understand how preschool children (4 years old) and their families develop engineering-related interests in early childhood and (b) develop community partnerships and programs that support engineering interest pathways for these families.
In order to reframe how learning is organized in traditionally male-dominated areas of STEM education, the authors show how collaborative girl-boy pairs engaged with an “e-textiles” making activity. E-textiles are circuit activities combining needles, fabric, and conductive thread, challenging traditional gender practices related to both sewing and electronics.
This paper investigates how intentionally designed features of an out-of-school time program, Studio STEM, influenced middle school youths’ engagement in their learning. The authors took a connected learning approach, using new media to support peer interaction and engagement with an engineering design challenge in an open and flexible learning environment.
The Lemelson Center for the Study of Invention and Innovation and the National Museum of American History (NMAH) contracted Randi Korn & Associates, Inc. (RK&A) to conduct a summative evaluation of Places of Invention (POI), an exhibition funded by the National Science Foundation. The evaluation was designed to determine the extent to which the exhibition achieved its outcomes: 1)Visitors identify the 21st century skills that inventors practice; 2)Visitors identify characteristics that support innovative communities; 3)Visitors express interest in learning about inventions and/or inventors; 4
The University of Oklahoma will increase knowledge about how youths create information and how information professionals can help them become successful information creators by promoting their information and digital literacies and other 21st century skills. This Early Career research project builds on existing research and results of previously funded IMLS Learning Labs by investigating how twenty-four middle school students engaged in project-based, guided-inquiry STEM learning to create information in a school library Learning Lab/Makerspace. The project will result in a model of information-creating behavior that can help develop a groundbreaking approach to information literacy instructions and creative programs.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.
The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
This University of Wisconsin System will conduct research to understand how the Madison Public Library (MPL) is building a production-oriented approach to literacy and learning through their maker-focused program, the Bubbler. On a national level, this project speaks to educational research communities, professionals, members of informal learning institutions, and organizers of designed makerspaces. At the local level, it addresses underserved populations in the Madison area and MPL in evaluating and developing the Bubbler. Findings will be shared through conference presentations, journal articles, and networks of library professionals.
This IMLS-funded study sought to examine the impact of educator-facilitation on engineering attitudes and self-efficacy of children in Design Challenges activities. Using a quasi-experimental design with statistically comparable pre- and post-experience groups, researchers collected observation, interview, and survey data to address the following research questions:
1. Do visitors’ perceptions of engineering activities improve as a result of the facilitated Design Challenges experience?
2. What aspects of the interactions between museum educators and Design Challenges visitors contribute
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
This research project led by the Exploratorium will use a combination of tracking and timing, cluster analysis, and focus groups to seek to answer the research question: To what extent and in what ways do female-responsive designs more effectively engage girls at STEM exhibits? This project addresses the need for more research in this area by pioneering the study of potential female-responsive design (FRD) principles for exhibits across a wide variety of STEM topics and exhibit types. This project includes four phases that will build from the work of the PI that developed an initial Female-Responsive Design (FRD) Framework regarding female engagement and learning in STEM -- based on extensive literature review and practitioner interviews. This project will expand on and validate this FRD Framework, with the ultimate goal of having a set of criteria for female-responsive designs (FRD) that effectively engage girls at STEM exhibits. The four phases of the research project are: Phase 1: Track 1000 boys and girls across three institutions using over 300 physics, engineering, and math exhibits to identify which exhibits engage boys and girls equally, and which are less engaging for girls. Phase 2: A panel of experts and girl advisors identify additional female-responsive design principles, expanding on those identified to date in literature and practice. Phase 3: Combining results from the first two phases, the third phase employs statistical analyses to reveal the most effective combinations of design principles for engaging girls across a variety of exhibits. Phase 4: This qualitative phase conducts focus groups with girls to explore how the final FRD Framework works to better engage them, and how their learning differs at exhibits that exemplify the principles in the Framework.