Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
Making assumptions is an important step in solving many real-world problems. This study investigated whether participants who could solve well-defined physics problems could also solve a real-world physics problem that involved the need to make assumptions. The participants, who all had at least a BA in physics, were videotaped “thinking aloud” while solving three well-defined and one real-world problem and then interviewed about the problem-solving process. All the problems dealt with the same scientific content. The recordings were analyzed to identify similarities and differences in the
DATE:
TEAM MEMBERS: David Fortus
resource research Informal/Formal Connections
This paper discusses conceptions of identity in relation to science education and presents material from a series of interviews and focus groups with graduate students in science and technology. Given difficulties in retention and levels of significant participation by minority students indicated by aggregate data, the issue of race, as it informs critical interactions at a majority research university, is explored in terms of its effects on identity formation. It is argued that we need to look at “real-time” science to see how subtle interactions affect minority graduate students. These
DATE:
TEAM MEMBERS: Kareen Ror Malone Gilda Barabino
resource research Public Programs
The article discusses how undergraduate science students became docents for "The Genomic Revolution" exhibit at the Fernbank Museum of Natural History in Atlanta, Georgia. According to the article, a docent is one who serves as a connection between the museum and the attendees and acts as an interpreter of the collection for the visitors. Undergraduate students were recruited from schools in the Atlanta, Georgia area including the Georgia Institute of Technology, Emory University, and Spellman College. The docent training program that would cover the genetic principles of the exhibit, the Peer
DATE:
TEAM MEMBERS: Robert Pyatt Tracie Rosser Kelly Powell
resource research Public Programs
The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of science and of the role of science in our daily lives. In this course, the students, with the help of expert faculty mentors, prepare lay-language presentations about science-related topics of their choice and take the presentations to adult venues in the
DATE:
TEAM MEMBERS: Hannah Alexander Anna Waldron Sandra Abell
resource research Public Programs
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
DATE:
TEAM MEMBERS: Roxanne Hughes
resource project Media and Technology
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
DATE:
TEAM MEMBERS: Roxanne Hughes
resource research Informal/Formal Connections
American Chemical Society President Bassam Z. Shakhashiri appointed and charged this Commission to undertake a wholesale review of graduate education in the chemical sciences over a yearlong period. This document is a compact rendition of the Commission's final report, emphasizing only main conclusions and recommendations. The Commission judges that the sate of graduate education in the chemical sciences is healthy in many respects, but has not kept pace with the significant changes in the world's economic, social, and political environment since the end of World War II, when the current
DATE:
TEAM MEMBERS: American Chemical Society
resource research Professional Development, Conferences, and Networks
A working group of the NIH Advisory Committee to the Director was tasked with developing a model for a sustainable and diverse U.S. biomedical research workforce that can inform decisions about training the optimal number of people for the appropriate types of positions that will advance science and promote health. Based on this analysis and recognizing that there are limits to NIH’s ability to control aspects of the training pipeline, the working group was asked to make recommendations for actions that NIH should take to support a future sustainable biomedical research infrastructure. This
DATE:
TEAM MEMBERS: National Institute of Health Dorit Zuk
resource research Informal/Formal Connections
This paper examines the experiences reported by scientists and graduate students regarding the experiences that first engaged them in science. The interviews analyzed for this paper come from Project Crossover, a mixed‐methods study of the transition from graduate student to PhD scientist in the fields of chemistry and physics. This analysis involved review of 116 interviews collected from graduate students and scientists and focused on the timing, source, and nature of their earliest interest in science. The majority (65%) of participants reported that their interest in science began before
DATE:
TEAM MEMBERS: University of Virginia Main Campus Robert Tai Adam Maltese
resource project Public Programs
Technical part.

This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. This research directly addresses the results of our prior NSF supported work that identified shared issues of indigenous people, natural resources and the decline of native language use among underserved populations in the Altai and Yellowstone systems. This project contributes significantly to our emerging understanding of science learning in informal settings. It addresses a unique conception of ecological learning in three dimensions; personal, community and cultural perspectives. Research and education objectives align with modern conceptualizations of informal science learning as proposed by the National Academies of Science (2009). The MSU-GASU collaboration provides a holistic view of science learning and will unite diverse intellectual resources and research efforts in unique ecological and social systems. Both the Yellowstone and Altai mountain systems are of global concern as part of worldwide natural and cultural resources impacted by pervasive development, recreation and tourism activities and climate change. The underlying theoretical foundation for learning proposed in this research project is the basis for effective approaches to enable isolated rural populations to contribute traditional knowledge and wisdom to contemporary issues related to world-wide ecological and cultural issues including global climate change. Aspects of sustainability practices that are embedded in the knowledge and social processes of both marginalized and dominant societies will be better understood and taken into consideration for future research and education activities. Research outcomes will contribute to more effective informal, place-based and experiential science learning to help empower communities and decision makers in meeting challenges of sustainability. Inevitably, we expect this work to extend our understanding of science learning related to critical natural and cultural resources and their management. An understanding of how, why and where learning takes place will help extend the US and international research and education agendas related to informal science learning, natural and cultural resource management and sustainability.

Non-technical part.

This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project we will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. Three cohorts of five MSU students will travel to the Altai Republic for eight weeks in the summers of 2013, 2014 & 2015. MSU students will comprise a research team with GASU science, education and language faculty to conduct research in the city of Gorno-Altaisk, two medium size villages such as Onguday and two small villages such as Karakol. We expect to work with youth in each setting and interview a representative sample at each site. As a research team we expect to gain a better understanding of how indigenous youth use native Altai language in informal settings to learn about environment. We expect to compare sights within the study. As part of our larger research interests in ecological learning and native people, we will conduct a similar comparative study in the Yellowstone Ecosystem with Native American youth. The studies associated with this project will add to our understanding about the extent and nature of native language use to learn science in underserved populations in very sensitive and unique ecological and cultural settings.
DATE: -
TEAM MEMBERS: Michael Brody Clifford Montagne Arthur Bangert Christine Stanton Shane Doyle
resource project Public Programs
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
DATE: -
TEAM MEMBERS: Pei-Ling Hsu Elena Izquierdo
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden