The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.
About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.
The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE:
-
TEAM MEMBERS:
Christine HaileyCameron DensonChandra Austin
Shedd Aquarium has launched a large-scale effort to address the long-standing need to better connect citizens in the Great Lakes region to their local Great Lakes watershed, to engage them in making positive changes to help the ecosystem, and to engage decision-makers and leaders to enact large scale change to improve the ecosystem over the long term. Through this award, Shedd is positioning itself strategically as the regional hub for Great Lakes education and behavior change by promoting Great Lakes civic engagement. Shedd Aquarium's Center for the Great Lakes is designed to bring scientists, business and government leaders, visionaries, and Great Lakes citizens together to formalize a strategic framework for increasing Great Lakes literacy and fostering Great Lakes stewardship. With the help of leading organizations: NOAA, COSEE Great Lakes, and members of the Healing Our Waters Great Lakes Coalition, a new vision for the Great Lakes region is being created. This civic engagement project is producing needed outcomes: increasing Great Lakes literacy while promoting policies of sustainability that ultimately will support the adoption of a stewardship ethic among our target audiences in the Midwest. Shedd's efforts empower citizens and civic entities to be critical thinkers who fully participate in the advancement of a sustainable society.
In the project entitled "The GLOBE Program 2010: Collaborative Environmental Research at Local to Global Scales," the University Corporation for Atmospheric Research (UCAR) will improve the functionality of the GLOBE Program by providing: (1) new methods, tools, and services to enhance GLOBE Partner and teacher abilities to facilitate inquiry-based learning and student research, (2) initial pilot testing and assessment of student and teacher learning activities and events related to Climate Science research, (3) improvements in GLOBE's technology infrastructure and data systems (e.g. database, social networking, information management) to support collaborations between students, scientists, and teachers, and (4) development of a robust evaluation plan. In addition, the UCAR will continue to provide support to the worldwide GLOBE community, as well as program management and timely communication with program sponsors.
Public images of scientific researchers –as reflected in the popular visual culture as well as in the conceptions of the public- combine traditional stereotypic characteristics and ambivalent attitudes towards science and its people. This paper explores central aspects of the public image of the researcher in Greek students’ drawings. The students participated in a drawing competition held in the context of the ‘Researcher’s Night 2007’ realized by three research institutions at different regions of Greece. The students’ drawings reveal that young people hold stereotypic and fairly traditional
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
The STAR Library Education Network: a hands-on learning program for libraries and their communities, (STAR_Net for short) is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (PI: Paul Dusenbery). STAR stands for Science-Technology, Activities and Resources. Team members include NCIL staff, the American Library Association (ALA), Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP). STAR_Net is developing two comprehensive, informal education programs: Discover Earth and Discover Tech. The project also includes a comprehensive evaluation plan and a research component that explores how public libraries can serve as a STEM learning center in rural, underserved communities. STAR_Net is supported through a grant from the National Science Foundation. The STAR_Net project includes two traveling library exhibits: Discover Earth: A Century of Change and Discover Tech: Engineers Make a World of Difference. The Discover Earth exhibition features interactive, multimedia displays that allow exhibit visitors to interact with digital information in a dynamic way, encouraging new perspectives on our planet. Discover Tech introduces the many extraordinary ways that engineers solve problems to help people and societies around the world. Similar to a science center experience, visitors and families will be able to explore and tinker with their own engineering solutions. A number of STEM activities and resources will be developed by project staff and by other organizations to help librarians and community partners offer a wide variety of programs for their patrons. Besides the traveling exhibits and programs, STAR_Net also includes library staff training (online and in-person) and a Community of Practice (CoP) for librarians (including non-host librarians) to interact and partner with STEM professionals and organizations. NCI's Kate Haley Goldman and staff from Evaluation and Research Associates are conducting the project's evaluation.
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE:
-
TEAM MEMBERS:
Loren ThompsonJeremy BabendureBen Wiehe
Investigators from the MIT Media Lab will develop and study a new generation of the Scratch programming platform, designed to help young people learn to think creatively, reason systematically, and work collaboratively -- essential skills for success in the 21st century. With Scratch, young people (ages 8 and up) can program their own interactive stories, games, animations, and simulations, then share their creations with others online. Young people around the world have already shared more than 1 million projects on the Scratch community website (http://scratch.mit.edu). The new generation, called Scratch 2.0, will be fully integrated into the Internet, so that young people can more seamlessly share and collaborate on projects, access online data, and program interactions with social media. The research is divided into two strands: (1) Technological infrastructure for creative collaboration. With Scratch 2.0, people will be able to design and program new types of web-based interactions and services. For example, they will be able to program interactions with social-media websites (such as Facebook), create visualizations with online data, and program their own collaborative applications. (2) Design experiments for creative collaboration. As the team develops Scratch 2.0, they will run online experiments to study how their design decisions influence the ways in which people collaborate on creative projects, as well as their attitudes towards collaboration. This work builds on a previous NSF grant (ITR-0325828) that supported the development of Scratch. Since its public launch in 2007, Scratch has become a vibrant online community, in which young people program and share interactive stories, games, animations, and simulations - and, in the process, learn important computational concepts and strategies for designing, problem solving, and collaborating. Each day, members of the Scratch community upload nearly 1500 new Scratch projects to the website - on average, a new project almost every minute. In developing Scratch 2.0, the team will focus on two questions from the NSF Program Solicitation: (1) Will the research lead to the development of new technologies to support human creativity? (2) Will the research lead to innovative educational approaches in computer science, science, or engineering that reward creativity? Intellectual Merit: The intellectual merit of the project is based on its study of how new technologies can foster creativity and collaboration. The investigators will conduct design experiments to examine how new features of Scratch 2.0 engage young people in new forms of creative expression, collaboration, learning, and metadesign. Young people are already interacting with many cloud-based services (such as YouTube and Facebook). But Scratch 2.0 is fundamentally different in that it aims to engage people in programming their own projects and activities in the cloud. With Scratch 2.0, young people won?t just interact with the cloud, they will create in the cloud. The goal is to democratize the development of cloud-based activities, so that everyone can become an active contributor to the cloud, not just a consumer of cloud-based services. This development and study of Scratch 2.0 will lead to new insights into strategies for engaging young people in activities that cultivate collaboration and creativity. Broader Impacts: The broader impact of the project is based on its ability to broaden participation in programming and computer science. The current version of Scratch has already helped attract a broader diversity of students to computer science compared to other programming platforms. The investigators expect that the collaboration and social-media features of Scratch 2.0 will resonate with the interests of today's youth and further broaden participation. Integration of Scratch into the introductory computer science course at Harvard led to a sharp reduction in the number of students dropping the course, and an increase in the retention of female students. There have been similar results in pre-college courses. The National Center for Women & Information Technology (NCWIT) calls Scratch a ?promising practice? for increasing gender diversity in IT.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskJohn Maloney
One issue of interest to practitioners and researchers in science centres concerns what meanings visitors are making from their interactions with exhibits and how they make sense of these experiences. The research reported in this study is an exploratory attempt, therefore, to investigate this process by using video clips and still photographs of schoolchildren’s interactions with science centre exhibits. These stimuli were used to facilitate reflection about those interactions in follow‐up interviews. The data for this study were 63 small group interviews with UK primary school children (129
Many informal science and mathematics education projects employ multiple media, but studies typically have investigated learning from a single medium, rather than multiple media. The present research, funded by the National Science Foundation, used Cyberchase(a multiple-media, informal mathematics project targeting 8-to 11-year-olds, produced by Thirteen/WNET) to investigate synergy among multiple media components and how they interact to yield cumulative educational outcomes.
DATE:
TEAM MEMBERS:
Shalom FischRichard LeshElizabeth MotokiSandra CrespoVincent Melfi
This research investigated gender equitable exhibit development by enhancing a geometry exhibit with several female-friendly design features and analyzing video data to determine the effects on girls' engagement and social interactions with their caregivers. The findings suggest that incorporating several female-friendly design features leads to significantly higher engagement for girls (evidenced by greater attraction and time spent). This study also looked for any unanticipated negative effects for boys after incorporating the female-friendly design features.