One way to encourage youth to pursue training in the STEM fields and enter the STEM workforce is to foster interest and engagement in STEM during adolescence. Informal STEM Learning Sites (ISLS) provide opportunities for building interest and engagement in the STEM fields through a multitude of avenues, including the programming that they provide for youth, particularly teens. Frequently, ISLS provide opportunities to participate in volunteer programs, internships or work, which allow teens both to learn relevant STEM knowledge as well as to share that knowledge with others through opportunities to serve as youth educators. While youth educator programs provide rich contexts for teens to engage as both learners and teachers in these informal STEM environments, research to date has not yet identified the relationship between serving as youth educators and STEM engagement. Thus, the goal of this project is to document the impact of youth educators on visitor learning in ISLS and to identify best practices for implementing youth educator programs. The project studies STEM interests and engagement in the youth participants and the visitors that they interact with at six different ISLS in the US and UK. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.
This project examines youth educator experiences related to STEM identity, educational aspirations, and motivation. The project also identifies outcomes that the youth educators have on visitors to ISLS in terms of knowledge, interest, and engagement in STEM. The specific aims are: 1) Outcomes for Teens - To measure the longitudinal impact of participation in an extended youth educator experience in an ISLS; 2) Outcomes for Visitors - To compare visitor engagement with and learning from exhibits in ISLS when they interact with a youth educator, relative to outcomes of interacting with an adult educator or no educator; and 3) Outcomes Across Demographics and STEM Sites - To examine differences in visitor engagement based on participant characteristics such as socio-economic status (SES), age, gender, and ethnicity and to compare outcomes of youth educator experiences across different types of ISLS. This research, which draws on expectancy value theory and social cognitive theory, will follow youth participants longitudinally over the course of 5 years and use latent variable analyses to understand the impact on the youth educators as well as the visitors with whom they interact. Importantly, the results of this research will be used to develop best practices for implementing youth educator programs in ISLS and the results will be disseminated to both academic and practice-based communities.
This project has clear and measurable broader impacts in a variety of ways. First, the project provides guidance to improve programming for youth in ISLS, including both the sites involved directly in the research and to the larger community of ISLS through evaluation, development, and dissemination of best practices. Additionally, this project provides rigorous, research-based evidence to identify and describe the outcomes of youth educator programs. This study directly benefits the participants of the research, both the visiting public and the youth educators, through opportunities to engage with science. The findings speak to issues of access and inclusivity in ISLS, providing insight into how to design environments that are welcoming and accessible for diverse groups of learners. Finally, this project provides evidence for best practices for ISLS in developing programs for youth that will lead to interest in and pursuit of STEM careers by members of underrepresented groups.
DATE:
-
TEAM MEMBERS:
Adam Hartstone-RoseMatthew IrvinKelly Lynn MulveyElizabeth ClemensLauren ShenfeldAdam RutlandMark WinterbottomFrances BalkwillPeter McOwanKatie ChambersStephanie TylerLisa Stallard
As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE:
-
TEAM MEMBERS:
Jeyamkondan SubbiahEric ThompsonDeepak KeshwaniRichard KoelschDavid Rosenbaum
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.
This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE:
-
TEAM MEMBERS:
David WatkinsBuyung AgusdinataChelsea SchellyRachael ShwomJenni-Louise Evans
This INSPIRE project addresses the issue of high volume hydraulic fracturing, also called fracking, and its effects on ground water resources. Fracking allows drillers to extract natural gas from shale deep within the earth. Methane gas sometimes escapes from shale gas wells and can contaminate water resources or leak into the atmosphere where it contributes to greenhouse gas emissions. Monitoring for these potential leaks is difficult because methane is also released into aquifers naturally, and because monitoring is time- and resource-intensive. Such subsurface leakage may also be relatively rare. This project seeks to improve overall understanding of the impacts of natural gas drilling using both advances in computer science and geoscience, and to teach the public about such impacts. The project will elucidate both the effects of human activities such as shale gas development as well as natural processes which release methane into natural waters. Results of the proposed research will lead to a better understanding of water quality in areas of shale-gas development and will highlight problems and potentially problematic management practices. The research will advance both the fields of geoscience and computer science, will train interdisciplinary graduate students, and involve citizen scientists in collecting data and understanding environmental data analysis.
The project combines new hydro-geochemical strategies and data mining approaches to study the release of methane into streams and ground waters. For example, researchers will explore how to analyze the heterogeneous spatial data that describe distributions of methane concentrations in natural waters. The objectives of this project are to i) transform the ability to measure methane in streams; ii) train citizen scientists to work with project scientists to sample streams in an area of shale-gas development and publish large-volume datasets of methane in natural waters and aquifers; iii) innovate data mining and machine learning methods for environmental data to identify anomalous spots with potential leakage; iv) run field campaigns to measure methane concentrations and isotopic signatures of water samples in these spots; v) foster dialogue among nonscientists, consultants, university scientists, members of the gas industry, government agencies, and nonprofit organizations in and beyond the target region. Toward this end, the team will host workshops aimed to build dialogue among stakeholders and will release data analytic software for environmental measurements to benefit a broader research community.
The project will conduct a nation wide study to address three broad questions:
(1) How does the public view zoos and aquariums and how do these institutions affect STEM (Science Technology Engineering Mathematics) learning outside their walls?
(2) How do visitors experience zoos at different stages in their lives and how do zoo visits affect their knowledge and perspectives concerning environmental issues and conservation?
(3) What are the entry characteristics of visitors and how do those characteristics play out in behaviors during a visit?
The project is designed to advance understanding of how informal STEM learning emerges through the intersection of institutional pedagogy and learning goals and the characteristics of individuals and their social and cultural backgrounds. As the first institutional study that advances a field-wide research agenda, the project will map how to implement a national collaborative effort that can help refine program delivery and cooperation between zoos, aquariums and other STEM learning institutions.
The study will describe zoo and aquarium visitors based on a broad understanding of demographics, group, and individual perspectives to expand understanding of how these factors influence visitor learning and how they view the relevance of educational messages presented by zoos and aquariums. The project will result in reports, workshops and a handbook presenting findings of practical value for educators, a research platform and research tools, online discussion forums, and directions for future research. The project, led by New Knowledge Organization (NKO), will be carried out through the collaboration of NKO with other informal research organizations and the Association of Zoos and Aquariums (AZA) with its 230 informal science learning institutional members. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
Informal Science, Techology, Engineering, and Mathematics (STEM) institutions seek to contribute to a scientifically literate culture, which includes new and innovative learning opportunities, a diverse community of scientists and science educators, equitable treatment for all, and the development of a well-trained workforce. In order to achieve these goals, informal STEM institutions must provide learning experiences that are welcoming and productive for all learners. The iPAGE model is a comprehensive program that prepares teams within informal STEM institutions to work with their colleagues to make their institutions more inclusive learning environments in which to learn, engage in, and identify with STEM. The project incorporates learning modules, workshops, site visits, and institution-specific activities all geared to build knowledge, awareness, and capacity related to creating inclusive environments at informal STEM institutions. The core iPAGE model is based on the US Department of Agriculture's agricultural extension service. It includes a Knowledge-to-Action approach, in which individuals adapt what they learn to local contexts by assessing barriers to knowledge use, selecting and implementing interventions, evaluating outcomes, and sustaining ongoing efforts. Through cycles of design-based iteration, the project will improve its practice, learning modules, and theory of action. Through surveys, interviews, and case studies, the research team will document learning, barriers to implementation, and culture change as teams and institutions seek to become more welcoming, diverse, and inclusive institutions. This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.
The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.
This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Michael HornBrian MagerkoJason Freeman
Informal learning, and by extension, museums, are inherently emotional experiences, evoking feelings of awe, excitement, and curiosity. Oftentimes, museum professionals have prioritized traditionally positive emotions such as excitement and interest as being the most desirable and useful in supporting museum learning. However, prior research into naturally occurring emotions at museums found that some visitors who experienced negative emotions, such as confusion or frustration, at exhibits also reported deeper engagement and overall feelings of satisfaction (Rappolt-Schlichtmann et al., 2017). Based on these findings and similar results from formal education (D’Mello et al., 2014), this project team has worked to develop and refine a framework of strategies for creating exhibits that invoke and support visitors through the complex emotional state called productive struggle (PS) which is defined as a three-part emotional arc characterized by: 1) disequilibrium (experienced emotionally as emotions like confusion, frustration, surprise, or unease) that arises from encountering a challenging task, phenomenon, or idea, 2) persistence through the task which is supported by exhibit design scaffolds, and 3) an emotionally productive resolution tied to the source of disequilibrium or an overall sense of effortful achievement. In deliberately attending to and supporting a range of negative and positive emotions in museums, visitors can gain access to a wider variety of complex emotional experiences, including those critical to STEM learning, and have potential to broaden participation in STEM by supporting learners' diverse emotional needs and preferences.
This multidisciplinary project team consisting of researchers and exhibit professionals utilized a design-based research (DBR) process to develop, test, and refine a definition of museum-based productive struggle, and create a framework of design strategies that support PS. Three physical exhibits and a virtual exhibit were created during this multi-year project. Additionally, a summative research study was conducted with 105 youth ages 10-17 to explore: 1) whether visitors experienced the expected emotional arc of PS; 2) how exhibit design strategies supported PS; and 3) the extent of visitors’ learning and engagement at these PS exhibits.
Rural communities across the Nation are, in general, underserved in terms of the various forms of STEM education. Clearly, they are under-represented in the realm of contemporary STEM subjects often because they are geographically isolated and cannot travel to cities where there are Science and Museum Centers for informal education opportunities. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This award will, in a collaborative effort within the community, bring STEM activities to selected communities in Arizona. Among the initial activities, there will be a STEM festival highlighting aspects of the community and its assets in an effort to gather support and begin to give perspective on identity for an extended effort of longevity. Further, these communities will be networked to facilitate discussion and to enhance effectiveness.
This project will develop STEM activities and STEM learning within a selected community by giving the community and its residents identity and opportunities for youth development and career choices. The selected communities in Arizona represent a diverse group that includes Native Americans and Latinos. In collaboration with community residents, a designed plan will be established that satisfies the needs and opportunities that can be derived from the extant community assets whether it is mining, tourism, or government facilities. Evaluation efforts are set to determine what the key features and methodologies are that facilitate STEM knowledge acquisition for each rural community. This project represents seminal and foundational work in the area of rural informal STEM education. Researchers will explore the following questions: 1) understanding how rural communities currently perceive, access, and engage in informal science learning, and the extent to which they identify themselves and/or their community in relation to science; and 2) the extent to which relevant, place-based networks can increase public awareness of local STEM assets, resources, and opportunities, and foster a science-related identity at both the personal and community level. These data will be compared to data on other rural community projects in the AISL portfolio. The partners in this effort include the Arizona Science Center, community leaders from four rural regions in Arizona, Arizona State University, and the Center of Science and Industry.
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the teach pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeks to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia, PA. As such, this project will deepen understandings of program replication and of addressing the needs of youth in economically-challenged communities in order to promote mathematics learning.
The project's research studies will assess the multiple factors that make Math Corps successful with youth in Detroit and document the implementation of the program to the three replication sites. Research methods include discourse analyses, surveys, interviews, and pre/post-tests. The project will also conduct a retrospective evaluation of Math Corps based on quantitative datasets regarding both near-term and long-term youth outcomes.
This projects is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter