This article from the Center for Advancement of Informal Science Education (CAISE) offers an introduction to the field of informal STEM education (ISE). It provides a brief survey of informal STEM education projects related to biology and discusses opportunities for scientists to become involved.
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project, "STEM Learning in Libraries: A National Conference on Needs, Opportunities, and Future Directions," brings together libraries, informal educators and STEM education and research organizations to discuss the role of libraries in STEM out-of-school time (OST) education, share existing programs, define library needs, and develop a research and evaluation agenda. To date, there has not been systematic exploration of the ways that STEM programming occurs in libraries nor of their effectiveness when they do happen. This will be the first conference of its kind and stands to have a high degree of visibility and the potential for broad impact. Principal Investigator Paul Dusenbery, Director of the National Center for Interactive Learning (NCIL) and Executive Director of Space Science Institute, will lead an experienced project team that includes Co-PI Keliann LaConte, Lunar Planetary Institute; Susan Brandehoff, Public Programs Office, American Library Association; and Anne Holland, NCIL. The conference sessions will be organized around four strands: (1) showcasing successful STEM programs and reviewing research and evaluation results on informal STEM learning in public libraries; (2) examining the current needs, barriers, and opportunities of public libraries; (3) elucidating the possible future roles of public libraries in the 21st Century; and (4) identifying promising practices and strategies. Beginning with core members comprised of the project team and organizing committees, the project will create a Leadership Forum for library directors, library science educators, and policy makers, as well as STEM professionals and educators. Conference results will be disseminated through a wide variety of organizational websites: NCIL, ALA, LPI, the conference website, the STAR_Net online community, and CAISE. In 2010, there were nearly 1.6 billion visits to 17,000 public libraries. Library audiences are true reflections of the nation's population - they serve all races, ages, economic backgrounds, and regions of the country. The STEM Learning in Libraries conference will give public libraries, STEM organizations, informal educators, and funders an opportunity to begin a dialogue with implications for profoundly impacting the attitudes of millions of Americans toward STEM topics.
QUEST Beyond Local is a consortium of six public media providers across the country coming together in a unique collaborative structure to foster widespread STEM literacy for general audiences; support formal and informal education outcomes in the sciences; and revive ailing science and environment journalism in the face of its rapid decline. QUEST Beyond Local is built on the success of the local, cross-editorial QUEST model, in which media making professionals from multiple disciplines--radio, television, web, and especially education--collaborate to distribute high-quality content to general and underserved audiences. Two years ago, KQED (serving Northern California) introduced a capacity-building effort with five other public media stations serving markets across the nation: Seattle (KCTS), Wisconsin (WPT/WPR), Nebraska (NET), Cleveland (ideastream), and North Carolina (UNC-TV). On the heels of this pilot process, QUEST Beyond Local will expand production in all markets and focus its multimedia efforts around the theme "Science of Sustainability" so as to achieve maximum effect on critical STEM outcomes in formal and informal education settings, and to foster science/environment literacy among a wide general audience. QUEST Beyond Local is defined by an organizationally and technologically innovative model of content creation: a newsroom structured according to a hub and spoke model; with common branding, technical, and style guidelines; and with a central coordinating and editorial office liaising between local production teams. Under the guidance of this central office, the collaborative seeks to create content with both local authority and national relevance. Building on existing media impact research, and previous research and evaluation of QUEST, research firm Rockman et al will apply evaluation theory to determine: (1) the structures and strategies to a successful STEM collaborative that contribute to a greater understanding of and engagement in science and environment topics; and (2) determine the interests, priorities, and media consumption habits of local and national STEM audiences. Primary project deliverables include three diverse multimedia packages for general and professional audiences, focusing on three main themes and anchored in STEM disciplines. In total, the three packages will include: 18 television segments; 6 half-hour television programs; 20 radio reports; 18 "web extras" (slide shows, maps, etc.); 12 web-based videos; 144 blog posts; 18 education "explainers"; 5 educator trainings; and a comprehensive distribution and social media campaign. All efforts will be supported by at least 18 science community partners, including zoos, museums, aquariums, research centers, and others. Through these efforts, the collaborative seeks to repair the systemic damage done by years of neglect to science/environment journalism--particularly the marked decline in this type of coverage over the last decade. This decline is perhaps related to the observed disconnect between the public and scientific knowledge, despite a demonstrated public appetite for science content and educators' reported desire for more resources and professional development opportunities focused on STEM topics. At a time when an evolving workforce and economy increasingly demand STEM skills and environmental literacy, QUEST Beyond Local will contribute resources to address these challenges.
This Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) project from the University of New Hampshire focuses on a "living bridge", which exemplifies the future of smart, sustainable, user-centered transportation infrastructure. Bridges deliver such a fundamental service to society that they are often taken for granted. Typically, bridges only stir the public's interest when they must unexpectedly be replaced at great cost, or, worse, fail. The Living Bridge project will create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy, by transforming the landmark Memorial Bridge--a vertical lift bridge over the tidal Piscataqua River, with pedestrian access connecting Portsmouth, New Hampshire to Kittery, Maine--into a living laboratory for researchers, engineers, scientists, and the community at large. The Living Bridge will engage innovators in sensor and renewable energy technology by creating an incubator platform on a working bridge, from which researchers can field test and evaluate the impact and effectiveness of emerging technologies. The Living Bridge will also serve as a community platform to educate citizens about innovations occurring at the site and in the region, and about how incorporating renewable energy into bridge design can lead to a sustainable transportation infrastructure with impact far beyond the region. Sustainable, smart bridges are key elements in developing a successful infrastructure system. To advance the state of smart service systems and clean energy conversion, this project team will design and deploy a structural and environmental monitoring system that provides information for bridge condition assessment, traffic management, and environmental stewardship; advances renewable energy technology application; and excites the general public about bridge innovations. This PFI:BIC project is enabled through partnerships between academic researchers with expertise in structural, mechanical and ocean engineering, sensing technology and social science; small businesses with expertise in instrumentation, data acquisition, tidal energy conversion; and state agencies with bridge design expertise. The Living Bridge technical areas are structural health monitoring, tidal energy conversion with fluid-structure interaction measurements, estuarine environmental monitoring, and outreach communication. Sensors will be used to calibrate a three-dimensional analytical structural finite element model of the bridge. The predicted structural response from this model will assess the measured structural response of the bridge as acceptable or not. Instruments installed on the turbine deployment platform will measure the spatio-temporal structure of the turbulent inflow and modified wake flow downstream of the turbine. Resulting data will include turbine performance and loads for use in fluid-structure interaction models. Deployed environmental sensors will measure estuarine water quality; wildlife deterrent sensors will deter fish from the turbine. Hydrophones and video cameras will be used before and during turbine deployment to monitor environmental changes due to turbine presence. Outreach efforts will make bridge data, history, and information about new systems accessible and understandable to the public and K-12 educators, facilitated by an information kiosk installed at the bridge. Public awareness will be assessed with survey methods used in the N.H. Granite State Poll. The lead institution is the University of New Hampshire (UNH) with its departments of Civil Engineering, Mechanical Engineering, and Sociology, and the Center for Ocean Engineering. Primary industrial partners are a large business, MacArtney Underwater Technology Group, Inc. (Houston, TX) and two small businesses Lite Enterprises, Inc. (Nashua, NH) and Eccosolutions, LLC (New Paltz, NY.) Broader context partners are New Hampshire Department of Transportation, NH Fish & Game Department, NH Port Authority, NH Coastal Program, City of Portsmouth (NH), Sustainable Portsmouth (nonprofit), Maine Department of Transportation; U.S. Coast Guard, Archer/Western (Canton, MA, large business), Parsons-Brinkerhoff (Manchester, NH, large business), UNH Tech Camp, UNH Infrastructure and Climate Network, UNH Leitzel Center for Mathematics, Science and Engineering Education, and Massachusetts Institute of Technology's Changing Places (a joint Architecture and Media Laboratory Consortium, in Cambridge, MA).
DATE:
-
TEAM MEMBERS:
Erin BellTat FuMartin WosnikKenneth BaldwinLawrence Hamilton
The aim of this project is to create conversations in science museums among scientists, engineers, and public audiences about an emerging research field, synthetic biology. Synthetic biology applies science and engineering to create new biological systems, and re-design existing biological systems, for useful purposes. This is an important new area of research and development that raises societal questions about potential benefits, costs, and risks. Conversations between researchers and public audiences will focus not only on what synthetic biology is and how research in the field is carried out, but also on the potential products, outcomes, and implications for society of this work. Researchers and publics will explore personal and societal values and priorities as well as desired research outcomes so that both groups can learn from each other. Public participants will benefit from knowing about this field of research, and researchers will benefit from hearing public perspectives directly from the public participants. This project will be led by the Museum of Science with partners at the American Association for the Advancement of Science, the Synthetic Biology Engineering Research Center, the Science Museum of Minnesota, the Ithaca Sciencenter, and several other universities and science museums. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is aimed at pushing beyond traditional modes of communicating with public audiences rooted in "public understanding of science" modalities into the mechanisms and perspectives associated with "public engagement with science" (PES). The project will support informal educational institutions as facilitators of such PES activities through which mutual learning takes place among research experts and various publics. Formative evaluation will support the development of evaluation tools that practitioners can use themselves to measure impacts of public engagement activities on both scientist and public participants. Summative evaluation will measure the impacts of the project on informal science education practitioners and researchers participating in the development of the project. In the first year of the project, two kinds of engagement activities will be tested at eight pilot sites across the U.S. The first kind will be the focus of "showcase" events, in which researchers demonstrate and talk with museum visitors about the basics of synthetic biology and their research work. The second kind will be the focus of "forum" events in which the multi-directional conversations focus on societal implications and participants' priorities for maximizing the benefits of this new field while minimizing the risks. The work of the first year will inform development of a kit of public engagement materials that will support widespread public engagement with synthetic biology in the second year at up to 200 sites across the U.S. Successful practices and infrastructure developed by the Nanoscale Informal Science Education Network to support NanoDays events will be use for this broad dissemination of public engagement in synthetic biology in year 2. When the project is complete a set of tools and guides will be provided online for developing, implementing, and evaluating engagement events that bring scientists and publics together, specifically about synthetic biology, but adaptable to other emerging research topics. The informal science education field will have a better understanding of how to get scientists, engineers, and publics to engage together in discussions about the societal implications of emerging technologies, and how to evaluate the quality of that engagement for both the researchers and the publics involved. The project will also provide a sense of informed public views on societal issues related to synthetic biology that emerge through a variety of public engagement activities that take place in science museums.
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
This conference at Arizona State University is an early-stage activity inspired by the upcoming 2016 - 2018 bicentennial of the conception, writing and publication of Mary Shelley's "Frankenstein - or The Modern Prometheus." That book, and the dozens of films produced subsequently, have provoked questions for researchers and citizens that have endured for two centuries and are relevant today. - How have we gone from a world in which Mary Shelley could watch public demonstrations of voltaic power on dead animals to one in which the dissection of animals in classrooms is frowned upon, but the creation of new life forms via an international synthetic biology competition (iGEM) is celebrated? - How do literary, artistic and other cultural portrayals of science and engineering inspire and inflect STEM research? - What steps do contemporary scientists and engineers need to take in order to proceed with their innovative activity in a responsible fashion? - What role do lay citizens have in making decisions about science and technology?- How can we understand the broad relationship between creativity and responsibility? The convening brings together a USA and international group of educators in informal science education and multi-disciplinary scholars who study various aspects of the interactions of science, technology and society (STS). This team of natural and social scientists, engineers, museum professionals (Museum of Science, Boston (MOS); Science Museum of Minnesota (SMM)), artists and humanities scholars will begin to formulate plans for producing exhibits, educational programs and demonstrations, fiction and nonfiction writing contests, performances, and curricula that explore science education, ethics and artistry. An overarching goal is to establish a process that could create a national and global network of collaborators to plan programs worldwide and establish new professional collaborations of researchers beyond the bicentennial. The workshop, a first step toward a possible larger initiative, could be significant both for the public's engagement with contemporary issues of science and society and for stimulating new inter-disciplinary research on such issues.
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
This project is making novel use of familiar technology (smartphones and tablets) to address the immediate and pressing challenge of affordable, ongoing, large-scale museum evaluation, while encouraging museum visitors to engage deeply with museum content. Using a smartphone app, museum visitors pose questions to a 'virtual scientist' called Dr. Discovery (Dr. D). Dr. D provides answers and the chance to complete fun mini-challenges. The questions visitors ask are gathered in a large database. An analytics system analyzes these data and a password-protected website provides continuous, accessible evaluation data to museum staff, helping them make just-in-time tweaks (or longer term changes) to exhibit-related content (such as multimedia, lecture topics, docent training, experience carts, etc.) as current events and visitors' needs and interests change. The intellectual merit of this project is that it is building evaluation capacity among informal educators, advancing the fields of visitor studies, museum evaluation, informal science learning, and situated engagement, and is contributing to the development of novel evaluation techniques in museums. This project has many broader impacts: The Ask Dr. Discovery system is available to any venue that wishes to use or adapt it to their context. By enhancing the visitor experience and improving museum access to data for evaluation and data-driven decision making across the country, Ask Dr. Discovery has both a direct and indirect impact on museums and visitors of all types. This project is also training the next generation of STEM and education innovators by employing a diverse team of undergraduate students.
The Cyberlearning Resource Center (CRC) has responsibility for promoting integrative collaboration among cyberlearning grantees (across NSF programs); synthesis and national dissemination of cyberlearning findings, technologies, models, materials, and best practices; creating a national presence for Cyberlearning; helping the disparate Cyberlearning research and development communities coordinate efforts to build capacity; and providing infrastructure (technological and social) for supporting these efforts. Monitored through the Cyberlearning: Transforming Education program, the CRC serves as a resource for all NSF grantees and programs with cyberlearning components, helping to promote synergy and integrate projects across NSF's cyberlearning investments. Among society's central challenges are amplifying, expanding, and transforming opportunities people have for learning and more effectively drawing in, motivating, and engaging young learners. Engaging actively as a citizen and productively in the workforce requires understanding a broad variety of concepts and possessing the ability to collaborate, learn, solve problems, and make decisions. Whether learning is facilitated in school or out of school, and whether learners are youngsters or adults, to develop such knowledge and capabilities, learners must be motivated to learn, actively engage over the long term in learning activities, and put forth sustained cognitive and social effort. Consistent with NSF's mission and strategic plan, a variety of programs at NSF invest in research aimed towards achieving these goals. In support of this important thematic thrust, the Cyberlearning Resource Center works with researchers and NSF program officers to identify and disseminate findings from across programs and projects; develop ways to broker productive partnerships and collaborations; convene meetings for purposes of envisioning the future, integrating findings, and building capacity,; and monitor the cyberlearning portfolio and its influences and impacts.
This project will bring STEM education to rural communities through local public libraries. Museum quality exhibits labelled as "Discover Earth", "Discover Technology", and "Discover Space" will spend 3 months at a series of locations around the Nation. Twenty four medium sized libraries will be chosen for the large exhibits and forty small libraries will be chosen for scaled down versions. The project's intent is to provide exhibits in every state and to reach as many under-represented individuals as possible. The significance of this project is that rural areas of this country are underserved regarding STEM education and since this segment of society is represented by 50-60 million residents, it is important to reach out to them. There is a significant segment of the Nation's population (50-60 million) that is underserved by out-of-school learning venues such as museums and science centers. An earlier phase 1 project demonstrated at 18 sites that rural libraries and librarians could provide STEM education to community members ranging in age from adults to children using these hands-on exhibits. Each exhibit (earth, space or technology) includes information about the topic and technologically enabled models to provide interesting and fun discovery mechanisms. They use common layman friendly language that highlights the most recent discoveries in each area. Each exhibit will be placed in the selected library for 3 months during which the library will organize events to feature and advertise the STEM learning opportunities. Another feature of this project will be to determine the models of learning in library settings and as a function of the demographics. The partners in this project that bring the necessary expertise are the American Library Association, the Afterschool Alliance, the Association of Rural and Small Libraries, the University of Colorado Museum, Datum Advisors, LLC, Evaluation and Research Associates, the Lunar and Planetary Institute, the American Geophysical Union, and the Space Science Institute.