Production of an immersive website exploring the history, culture, and archaeology of the Giza plateau.
The Giza Project at Harvard University plans to build the full-scale version of its forthcoming public website, Digital Giza. Using the tools of the future to study the past, this free online resource will integrate diverse primary documentation from over 100 years of international archaeological research in Egypt with a scientifically-informed 3D immersive computer model of the whole Giza Plateau, including the pyramids, temples, settlements, and surrounding cemeteries. Through various “digital archaeology experiences,” visitors to the site will engage with new forms of interpretation and story-telling based on Giza materials digitally embedded and clearly contextualized in their original spatial settings. The Giza Project’s ultimate deliverable will be a powerful new online education and research tool for the world community at all levels of expertise: an interactive website and virtual environment encouraging exploration into Egyptological, historical, and broader humanities themes.
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.
Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Historic art objects provide a collection of materials that have been naturally aged for decades or even centuries. In addition to the intrinsic archival value of these materials, they are also models for understanding property degradation over long periods of time. This project aims to develop computational and experimental tools needed to understand how these changes take place. To accomplish this task a research network has been established between Northwestern University and leaders in cultural heritage science from the Rijksmuseum and the University of Amsterdam in the Netherlands, the National Research Council in Italy, and the Synchrotron Soleil in France. This new infrastructure promises to deliver a significant enhancement of research and education resources (networks, partnership and increased access to facilities and instrumentation) to a diverse group of users. The art objects central to the project provide a series of well-defined case studies for investigating complex materials systems that are both applicable to materials education and push the limits of the existing analytical tools, thus inspiring instrumental innovations across broad sectors of the physical sciences. Further development of these tools will enable art conservators to more effectively make informed decisions about treatments of works of art, and to understand long-term materials degradation more generally. The project will also deliver a significant enhancement of research and education infrastructure by a diverse group of users and will provide meaningful, international research experience to 50 participants, with a strong emphasis on scientists at the beginning of their careers. In addition, the connections between science and art will illustrate the creative aspects of both disciplines to a very broad audience, attracting a more representative cross section of people into science.
DATE:
TEAM MEMBERS:
Kenneth ShullFrancesca CasadioOliver CossairtAggelos KatsaggelosMarc Walton
The making and tinkering movement has become increasingly mainstream over the past decade, pioneered in part through the popularity of magazines like `Make', events such as Maker Faire and DIY websites including `Instructables'. Science centres and museums have been developing their own ideas, notably the Tinkering Studio at the Exploratorium. In this commentary piece, we reflect on why this movement has a strong appeal for the Life Science Centre in Newcastle upon Tyne and why we are in the process of developing a new making and tinkering space to help us enact our centre's vision to `Enrich
RK&A conducted a summative evaluation of the New Glass Now exhibition at the Corning Museum of Glass. The interpretative goal for the exhibition is to challenge visitors to expand their notions of glass in contemporary art and design.
Methodology
The goal of the study is to explore visitors’ experiences in the temporary exhibition—the first exhibition to be evaluated in the contemporary wing of the museum. RK&A conducted 100 timing and tracking observations of visitors in the exhibition; visitors were recruited from all three potential entrances to the exhibition. Observation data
During the International Year of Astronomy in 2009, we initiated a collaboration between astrophysicists in Western Australia working toward building the largest telescope on Earth, the Square Kilometre Array (SKA), and Indigenous artists living in the region where the SKA is to be built. We came together to explore deep traditions in Indigenous culture, including perspectives of the night sky, and the modern astrophysical understanding of the Universe. Over the course of the year, we travelled as a group and camped at the SKA site, we sat under the stars and shared stories about the
In this paper we share an emerging analytical approach to designing and studying STEAM programs that focuses on how programs integrate the respective epistemic practices—the ways in which knowledge is constructed—of science and art. We share the rationale for moving beyond surface features of STEAM programs (e.g., putting textiles and electronics on the same table) to the disciplinary-specific ways in which participants are engaged in creative inquiry and production. We share a brief example from a public STEAM event to demonstrate the ways in which this approach can foster reflection and
The New Jersey Historical Commission (NJHC) initiated the Understanding Communities Study with the goal to better understand how New Jersey history and history organizations can be more inclusive for all. NJHC contracted RK&A for the first phase of the study to conduct focus groups with members of Hispanic and Latino communities in New Jersey. NJHC plans to expand the study to other communities in the future. The New Jersey Center for Hispanic Policy, Research and Development served as advisors in the project.
With support from NJHC partners, RK&A conducted three focus groups with
The National Building Museum (NBM) contracted RK&A to evaluate Creative-in-Residence (CIR), a program that invites visual and performing artists to NBM for short-term residencies to create original work that promotes engagement with the built environment. The study goal was to consider future implications for the CIR program based on the most recent CIR iteration (a January 2019 dance performance inviting visitors to explore NBM’s historic building) and past program iterations.
How did we approach this study?
To hear a variety of perspectives on CIR, RK&A conducted in-depth telephone
This project will engage community members and youth in 13 rural, tribal, and Hispanic communities in the Four Corners Region of the south western U.S. with the science and cultural assets of water. Water is a significant and scarce resource in this geographic area. The Four Corners Region experiences low annual precipitation and high year-to-year fluctuations in water availability. Thus, water is a topic of great interest to community members, whose lives are shaped by water-related events such as drought, flood, and wildfires. Rural tribal, and Hispanic communities are often underserved with respect to science programming; their public libraries often function as the local science center. The project's inter-disciplinary team will develop, deploy, research, and evaluate an interactive traveling exhibit for small libraries, designed around regional water topics and complemented by interactive programming and community engagement events. Additionally, the team will build local capacity by fostering a community of practice among the host librarians, including participation through a support system--the STAR Library Network--to increase their science programming.
This project creates a traveling exhibit and complementary programming around water topics. Through an exhibit co-design model, communities will provide input in the exhibit development, identify water topics that are critical to them, and engage the multi-generational audiences. The exhibit merges the captivating attraction of water with the underlying science content and community context, giving patrons the opportunity to explore these topics through active learning stations, informational panels, citizen science-based activities, and an interactive regional watershed model. Artistic representations of water will be developed by community groups and incorporated into the exhibit as a dynamic display element.
Project goals are to:
Spark interest in and increase understanding of water as a critical resource and cultural asset across rural, tribal, and Hispanic communities in the Four Corners Region.
Increase availability of and access to engaging programming for underserved rural, tribal, and Hispanic communities focusing on the science and cultural aspects of water in the Four Corners Region.
Build capacity for libraries to implement water-focused science programs, and increase available science learning and science communication resources tailored to these informal learning settings.
Foster a Community of Practice (CoP) for participating librarians to support the development of their programming and content knowledge.
Advance the body of research on informal learning environments and their role in developing community members' science ecosystems and science identities, particularly in library settings.
The project team will rigorously assess the extent to which program approaches and components stimulate patrons' interest in science, increase science knowledge, and support building a personal science identity. The model is based on the STEM Learning Ecosystems Framework. Robust evaluation will guide the program development through a front-end needs assessment and iterative revision cycles of implementation strategies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Vassar College is conducting a 2.5-day conference, as well as pre- and post-conference activities, that convenes a multi-disciplinary, multi-institutional (USA and international) team to conceptualize and plan various research, education and outreach activities in informal learning, focusing on the seminal concept of tensegrity and its applications in many fields of science and mathematics. Tensegrity is the characteristic property of a stable three-dimensional structure consisting of members under tension that are contiguous and members under compression that are not.
The conference will bring together researchers and practitioners in informal learning and researchers in the various disciplines that embrace tensegrity (mathematics, engineering, biology, architecture, and art) to explore the potential that tensegrity has to engage the public in informal settings, especially through direct engagement in creating such structures. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
To date there have been no sustained informal educational projects and research around the topic of tensegrity. However, there is considerable related work on learning through "making and tinkering" upon which the participants will adapt and expand. The intended conference outcomes are to produce prototypes of activities, a research agenda, and lines of development with the potential to engage the wider public. A key priority of the gathering is the development of new partnerships between researchers and creators of tensegrity systems and the informal learning professionals. The long-term project hypothesis is that children and adults can engage with tensegrity through tinkering with materials and becoming familiar with a growing set of basic structures and their applications. The activities will include evaluation of the conference and a social network analysis of the collaborations that result.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Outreach activities at the interface of science and art present a unique opportunity to connect and engage with “latently interested” publics who do not otherwise take part in science activities like visiting science museums. In this paper, the authors present “Guerilla Science” as one model that supports the hypothesis that well-designed science + art (STEAM) programming in informal settings can broaden participation in, and facilitate engagement with STEM-related topics. This paper describes a range of interactive events featuring scientists and artists and accompanying research into the