This article makes a case for the importance of brokering future learning opportunities to youth as a programmatic goal for informal learning organizations. Such brokering entails engaging in practices that connect youth to events, programs, internships, individuals and institutions related to their interests to support them beyond the window of a specific program or event. Brokering is especially critical for youth who are new to an area of interest: it helps them develop both a baseline understanding of the information landscape and a social network that will respond to their needs as they
Reconceptualizing STEM + Computing Literacy is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance multidisciplinary integration of computing and computational thinking in K-12 science, technology, engineering, and mathematics (STEM) teaching and learning through applied research and development across one or more domains, and broadening participation in computing and computing-related fields. The project will study the integration of computational thinking as part of a new and more contemporary perspective of STEM literacy, and will design, develop, and beta-test a prototype literacy assessment tool that will measure computational thinking literacy along with measures of literacy in other STEM content areas. The tool will be available to the general public as a self-measurement application (App) that can be used by individuals to test their own literacy, and by teachers, schools, and informal educators and organizations to assess literacy development in their students and in their STEM education programs. This transdisciplinary research project will begin the process of creating an innovative approach and tool for measuring literacy that will expand the definition of literacy to include computational skills along with science reasoning. Literacy is an important concept and measurement that has traditionally been used to assess an individual's knowledge of science. This project will explore a broader literacy perspective that incorporates learning derived from out of school and one that incorporates computational skills and thinking as part of a more contemporary perspective of STEM literacy. A prototype web-based App allowing individuals and education organizations to assess literacy levels, and ways to enhance literacy, will be developed and studied. The methodology will be developed using discussions and knowledge from over 60 experts across computing, education, science, social science, and other STEM fields using a Delphi method to engage in reconceptualization of literacy. The hypothesis is that this new STEM+C literacy framework should be structured along four interacting but semi-independent domains: 1) general STEM+C knowledge; 2) self-defined areas of STEM+C knowledge and expertise; 3) attitudes and beliefs related to STEM+C; and 4) the skills and competencies necessary to participate in STEM+C related pursuits and discussions, including measures of modes of STEM+C thinking. Each of these four domains is likely to include numerous sub-domains and associated descriptors, which collectively describe the different aspects of being a STEM+C literate citizen. The application will be designed to provide feedback to individuals on their knowledge, attitudes and skills compared with those of others and suggest ways to enhance and improve their skills and understanding through an embedded feedback mechanism. This project creates public benefit by providing individuals and organizations with a responsive real-time understanding measuring STEM+C literacy, deepening the dialogue about the value of public engagement in science, engineering, technology, math and computing and revealing the dynamic factors that inform STEM+C literacy.
Brokering Youth Pathways was created to share tools and techniques around the youth development practice of “brokering” or connecting youth to future learning opportunities and resources.
This toolkit shares ways in which various out-of-school educators and professionals have approached the challenge of brokering. It provides a framework, practice briefs and reports that focus on a particular issue or challenge and provide concrete examples, as well as illustrate how project partners partners worked through designing new brokering routines in partnership with a research team.
MobiLLab is a mobile science education program designed to awaken young people’s interest in science and technology (S&T). Perceived novelty, or unfamiliarity, has been shown to affect pupils’ educational outcomes at similar out-of-school learning places (OSLePs) such as museums and science centers. A study involved 215 mobiLLab pupils who responded to three surveys: a pre-preparation, at-visit, and post-visit survey. Results provide evidence for four dimensions of pupils’ at-visit novelty: curiosity, exploratory behavior, oriented feeling, and cognitive load. Findings also show that classroom
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.
In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).
Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
MobiLLab is a mobile science education program designed to awaken young people’s interest in science and technology (S&T). Perceived novelty, or unfamiliarity, has been shown to affect pupils’ educational outcomes at similar out-of-school learning places (OSLePs) such as museums and science centers. A study involved 215 mobiLLab pupils who responded to three surveys: a pre-preparation, at-visit, and post-visit survey. Results provide evidence for four dimensions of pupils’ at-visit novelty: curiosity, exploratory behavior, oriented feeling, and cognitive load. Findings also show that classroom
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content.
Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
“The Roads Taken” virtual conference was part of a three-phase research project designed to explore the very long-term impact of STEM youth programs (such as the iconic YouthALIVE program). In this first phase, a virtual conference was held to engage youth program practitioners in the development and testing of a Program Profile prototype, a structured document that helps institutions to characterize their own youth programs in useful ways.
Following the webinars and the completion of the Program Profile by each organization, participants were asked to complete a brief survey (included as
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper
Purpose: This project team will develop and test Zaption, a mobile and desktop platform designed to support educators in effectively and efficiently utilizing video (e.g., from YouTube, Vimeo, or their own desktop) as an interactive teaching and learning object. Personalized learning devices (e.g., smartphones, tablets) populated with video content provide opportunities for students to access educationally-meaningful content anywhere and anytime. Yet, video has yet to realize its potential as a learning tool in or out of the classroom. One reason for this is that watching video can be a passive experience for students, whereas learning requires active engagement. A second reason is that even if students are actively engaged while watching a video, there is no easy way to elicit student responses to a video. And finally, there is no easy way to feed student responses to teachers as formative assessment data to guide subsequent instruction.
Project Activities: During Phase I, (completed in 2014), the team expanded a pre-existing prototype by building a mobile app to enable anytime use and increase its functionality for teachers. At the end of Phase I, pilot research with 150 students in 7 classrooms demonstrated that the prototype operated as intended, teachers were able to integrate the videos within instructional practice, and students found the mobile app helpful and engaging. In Phase II, the team will add additional components to the prototype and will develop content-specific modules for use in high school physics classes. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Zaption for supporting student's physics learning. The study will include 32 Grade 10 physics classrooms, half of whom will be randomly assigned to use Zaption and half of whom will follow business as usual procedures. Analyses will compare pre-and-post scores of student's physics learning.
Product: Zaption will be a mobile and web-based platform to support the use of any video (e.g., from YouTube, Vimeo, or their own desktop) as a teaching and learning tool. Zaption will include an authoring engine where users can find and select video clips and easily insert interactive elements such as questions, discussions, and annotations into the videos. Users will then publish videos directly on Zaption's website, or on any learning management system or classroom website. Students will be able to view videos as homework or in class, respond individually to the questions and prompts, and get feedback on their responses. Teachers will use Zaption Analytics to receive immediate and actionable data showing whether students actually watched and engaged with a video, and how students responded to the questions and prompts.