The Space Science Institute is developing an astronomy educational social game for the Facebook platform. The game uses the "sporadic play" model popular with many Facebook games, in which players take only a few actions at a time, then return to explore the results. Here players will create their own stars and planetary systems that evolve over time at a rate of a million years a minute. Players set systems in motion, revisiting the game over days or weeks to make new choices and alter strategies. The game is in effect an end-to-end solar system simulation, following a star from birth to death. As a result it encompasses a wide variety of core concepts in astronomy, including galactic structure, stellar evolution and lifecycles, planetary formation and evolution, and habitability and "habitable zones." The accompanying research program will examine the effectiveness of this type of game in informal education, and the effects of the social network on meeting the education goals, including viral spread, cooperative play, and discussions about the game and its underlying content in associated online forums.
Living Liquid will identify strategies for creating visualization tools that can actively engage the public with emerging research about the ocean's microbes and their impact on our planet. It addresses a critical issue for the ISE field: creating ways for visitors to ask and answer their own questions about emerging areas of science with visualizations. This Pathway project will provide important lessons learned for a future full-scale development project at the Exploratorium's new location over San Francisco Bay, and for informal science educators and other professionals working to create interactive visualization tools using the vast data sets now available. Living Liquid is a collaboration between developers, educators and learning researchers at the Exploratorium, computer scientists at the Visualization Interface and Design Innovation Group at UC Davis, and marine scientists at the Center for Microbial Oceanography Research and Education. The project's research and development process includes a front-end study of visitors' interests and prior knowledge related to ocean microbes, interviews with scientists to identify potential datasets and activities, a survey of candidate visualizations, and a series of prototypes to identify promising strategies to engage visitors with and allow visitors to explore large scientific datasets through visualization tools.
The authors describe a study of programs to deepen families' scientific inquiry practices in a science museum setting. The programs incorporated research-based learning principles from formal and informal educational environments. In a randomized experimental design, two versions of the programs, called inquiry games, were compared to two control conditions. Inquiry behaviors were videotaped and compared at pretest and posttest exhibits. Family members were also interviewed about their perceptions and use of the inquiry games. Results indicated that visitors who learned the inquiry games
This report is the National Education Technology Plan (NETP) submitted by the U.S. Department of Education (ED) to Congress. It presents five goals with recommendations for states, districts, the federal government, and other stakeholders. Each goal addresses one of the five essential components of learning powered by technology: Learning, Assessment, Teaching, Infrastructure, and Productivity. The plan also calls for "grand challenge" research and development initiatives to solve crucial long-term problems that the ED believes should be funded and coordinated at a national level.
DATE:
TEAM MEMBERS:
U.S. Department of EducationDaniel AtkinsJohn BennettJohn Seely BrownAneesh ChopraChris DedeBarry FishmanLouis GomezMargaret HoneyYasmin KafaiMaribeth LuftglassRoy PeaJim PellegrinoDavid RoseCandace ThilleBrenda Williams
resourceprojectWebsites, Mobile Apps, and Online Media
SETAC is funded by the Lifelong Learning Programme of the European Union and emerges out of the need to undertake specific action for the improvement of science education. It regards science education as among the fundamental tools for developing active citizens in the knowledge society. SETAC draws on the cooperation between formal and informal learning institutions, aiming to enhance school science education and active citizenship looking further into the role of science education as a lifelong tool in the knowledge society. On the day of the project’s conclusion, 31 October 2010, after two years of work SETAC contributes the following products and results to the field: 1. “Quality Science Education: Where do we stand? Guidelines for practice from a European experience” This is the concluding manifesto that presents the results of the SETAC work in the form of recommendations for practitioners working in formal and informal science learning institutions; 2. “Teaching and Learning Scientific Literacy and Citizenship in Partnership with Schools and Science Museums” This paper constitutes the theoretical framework of the project and innovative ways of using museums for science education and develop new modes of linking formal and informal learning environments; 3. Tools for teaching and learning in science: misconceptions, authentic questions, motivation. Three specific studies, leading to three specific reports, have been conducted in the context of the project, looking in particular into notions with an important role in science teaching and learning. These are on: Children’s misconceptions; Authentic questions as tool when working in science education; Students’ attitudes and motivation as factors influencing their achievement and participation in science and science-related issues; 4. Activities with schools: SETAC developed a series of prototype education activities which were tested with schools in each country. Among the activities developed between the partners, two have been chosen and are available on-line for practitioners to use and to adapt in their own context. These are: The Energy role game, a role game on Energy invites students to act in different roles, those of the stakeholders of an imaginary community, called to debate and decide upon a certain common problem; MyTest www.museoscienza.org/myTest, which aims to encourage students to engage in researching, reflecting and communicating science-oriented topics; 5. European in-service training course for primary and secondary school teachers across Europe. The training course is designed in such a way as to engage participants in debate and exploration of issues related to science education and active citizenship. The course is open to school teachers, headteachers and teacher trainers from all EU-member and associate countries. Professionals interested can apply for a EU Comenius grant. All the products of the project as well as information about the training course are available at the project website, some of them in more than one languages: www.museoscienza.org/setac
Researchers at the U.C. Davis will carry out observations of museum visitors to plan for a study of how visualizations affect visitors of an Earth Sciences exhibit using 3D technology. The researchers will be able to conduct an experimental study about how much participants in an education center learn from the model of earthquakes and of a model of the Lake Tahoe basin. The researchers will conduct a quasi-experiment of a sample of 100 visitors to the center at Lake Tahoe to study their experience with visualization and learning of science. The funding for this phase of the project will include the development of audience surveys, conducting focus groups to develop types of feedback, train staff to conduct data collection, and to conduct a literature review of technology visualization.
PERG conducted the formative and summative evaluations of Windows on Earth, a project led by the Center for Earth and Space Science Education (CESSE) at TERC. The project included numerous partners and contributors who focused on the development of the Windows on Earth software, exhibit and website, as well as four museums who participated in the development and evaluation process: Boston's Museum of Science, (MOS), the Smithsonian Air and Space Museum, (A&S), the St. Louis Science Center (SLSC), and the Montshire Museum of Science (MM) in Vermont. The project also coordinated some programming
DATE:
TEAM MEMBERS:
Judah LeblangJoan KarpTERC IncJodi Sandler
In 2009, the Monterey Bay Aquarium began looking at new ways to interpret its Seafood Watch program. This nationwide conservation program strives to educate the public about the importance of buying sustainable seafood. As part of the program, the Aquarium publishes a printed pocket guide that lists the types of seafood consumers should buy and the types they should avoid. (For more information, visit www.seafoodwatch.org.) Over the years, several zoos, aquariums and museums that partner with the Aquarium have expressed interest in displaying an exhibit to encourage more of their visitors to
This document outlines front-end and formative evaluation findings including baseline use; improving attraction and holding power and interactions; and improving interfaces. While we found that people like the globe and will stay and interact especially with the redesigned kiosk, there is still room for improvement in support for information transfer and meaning generation, as well as opportunities for retaining user choice and control while adding usability features such as narration.
DATE:
TEAM MEMBERS:
Shawn RoweKatie StoferCéleste BarthelNancee HunterHatfield Marine Science Center
Media MashUp (MMU) was an IMLS funded project (LG-07-08-0113 ) designed to help libraries build capacity for offering computer-based programs for youth. These programs were designed to help foster 21st Century literacy skills. The program focused on the Scratch programming language (http://scratch.mit.edu/), but also used other creative freeware programs (i.e., Audacity, Picasa, SAM animation, ArtRage). MMU was a partnership among six library systems from around the country and The Science Museum of Minnesota. Three staff members from each library participated in the program: two librarians or
Inclusion, Disabilities, and Informal Science Learning, a report by the CAISE Access Inquiry Group, sets forth a framework for changing this inequity. This white paper offers a theoretical framework for thinking about inclusion of people with disabilities in informal science education (ISE), then reviews current practice in museums (broadly defined), in media and technology, and in youth and community programs. While "investigations located a number of projects, initiatives, and organizations that have sought greater inclusion of people with disabilities in ISE," the report concludes, "these
This planning effort, a collaboration of teams at the University of Maryland, Cornell University, Carnegie Mellon University and the Sciencenter of Ithaca, deals with the development and testing of a unique methodology for educating youth in computer programming. Through a mobile robot that is cleverly disguised as a small animal, participants will learn to manipulate the system by physically moving it as well as setting variables via electronic buttons thereby learning programming and design. The eventual use of this system and methodology is in museum exhibits so preliminary survey data will be gathered from various venues that presently use less capable devices. Iterative testing will be done at the Sciencenter in its exhibits.