These blog posts were written by researcher Andee Rubin in 2013 & 2014 as a way to provide technical assistance to investigators planning to carry out research in informal settings. The first post provides a history of human subjects protection as it emerged from medical research and thoughts about the application of these principles to informal settings. The second discusses the set of federally-mandated rules that Institutional Review Boards (IRBs) use to protect human subjects and describes how and when researchers need to seek IRB approval for their work. The third describes techniques for
The following QuarkNet evaluation data were collected between September 2011 and September 2012. Questions from an Evaluation Matrix developed by QuarkNet program director and NSF program director are addressed, preceded by a summary of data collection and analysis. This is the fourth year using the Matrix. Collection strategies were updated based on findings from last year and included in this year’s evaluation
section. This is the last annual report under the 2008-2012 grant from The National Science Foundation (NSF) and the Department of Energy (DOE).
The Nanoscale Informal Science Education Network (NISE Network) is a national infrastructure that links science museums and other informal science education organizations with nanoscale science and engineering research organizations. The Network’s overall goal is to foster public awareness, engagement, and understanding of nanoscale science, engineering, and technology. As part of the front-end effort, this report, Part IIB, documents 19 nanoscale STEM programming, media, and school-based projects that have been completed or are in development as of 2005.
The Nanoscale Informal Science Education Network (NISE Network) is a national infrastructure that links science museums and other informal science education organizations with nanoscale science and engineering research organizations. The Network’s overall goal is to foster public awareness, engagement, and understanding of nanoscale science, engineering, and technology. As part of the front-end effort, this report, Part IIA, documents 11 nanoscale STEM exhibits that have been completed or are in development as of 2005.
Dr. Barbara Flagg, Director, Multimedia Research, will conduct exploratory research to assess the feasibility and viability of presenting to the public an on-going review of new findings or issues in major fields of research. This research on the untested idea of providing the public with information about research on a regular, on-going basis through multiple media will provide information about the American public's current science media habits, their awareness of and interest in broad areas of research, and the presentation formats most likely to appeal to and reach the public on a regular basis.
Research on mathematical reasoning and learning has long been a central part of the classroom and formal education literature (e.g., National Research Council, 2001, 2005). However, much less attention has been paid to how children and adults engage with and learn about math outside of school, including everyday settings and designed informal learning environments, such as interactive math exhibits in science centers. With the growing recognition of the importance of informal STEM education (National Research Council, 2009, 2015), researchers, educators, and policymakers are paying more
Making, tinkering, and other informal design and engineering experiences offer rich opportunities to engage
children and adults in mathematics and build mathematical skills, knowledge, and interests. But how can educators
successfully integrate mathematics into these experiences? One approach to answering this question is to better understand how children and adults engage with and think about mathematics outside of school, in every day and informal learning environments. As part of the NSF-funded Math in
the Making project, Pattison, Rubin, and Wright (2016) synthesized the research on
Although there is a growing body of research on mathematics in informal learning environments (Pattison, Rubin, & Wright, 2016; Rubin, Garibay, & Pattison, 2016), less has been done to understand how math can be integrated into other informal STEM education settings or topics, and how this integration might engage those who do not already have positive attitudes about math. Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities (Bevan, Gutwill, Petrich, & Wilkinson, 2015; Vossoughi, Escudé, Kong, & Hooper
Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community lacks a cohesive, evidence-based guide for designing effective communication activities. This report is organized into two sections. Part A: The Evidence Base for Enhanced Communication summarizes evidence from communications, informal learning, and
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. EvalFest is a community of practice designed to test innovative evaluation methods across 24 Science Festivals to measure their impact.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Using a combination of Peg + Cat, an animated math-based PBS television series for preschoolers; professional development (PD); family engagement resources; and the existing infrastructure of a regional Head Start system, this project aims to increase participating educators’ and families’ comfort and engagement with mathematics.
This study examined the validity of the Draw-A-Scientist Test (DAST), which is commonly used to capture students’ perceptions of scientists. Findings suggest that the DAST is not valid as a sole measurement. The originally identified stereotypical traits are no longer widely held by students.