Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource research Informal/Formal Connections
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's
DATE:
TEAM MEMBERS: National Research Council
resource project Media and Technology
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
DATE: -
TEAM MEMBERS: Dean Cristol Christopher Andersen Lynn Sametz
resource project Public Programs
This proposal, the "Dan River Information Technology Academy (DRITA)," is a request for a three-year program for high school students from underserved populations who are interested in pursuing IT or STEM careers. The overall goal of DRITA is to provide opportunities for promising African American or Hispanic youth to (1) develop solid Information Technology skills and (2) acquire the background and encouragement needed to enable them to pursue higher education in STEM fields, including IT itself and other fields in which advanced IT knowledge is needed. A total of 96 students will be recruited over the course of the three years. Each DRITA participant will receive 500 hours of project-based content. The project includes both school-year modules and a major summer component. Delivery components will include a basic IT skills orientation; content courses in areas such as animation, virtual environment modeling, advanced networking, programming, GIS, robotics, and gaming design; externships; a professional conference/trade show "simulation," and college/career counseling. Parent involvement is an integral part of the program and includes opportunities for parents to learn from participants, joint college visits, and information sessions and individual assistance in the college admission process.
DATE: -
TEAM MEMBERS: Julie Brown Elizabeth Nilsen Maurice Ferrell
resource research Media and Technology
Children’s worlds are increasingly populated by intelligent technologies. This has raised a number of questions about the ways in which technology can change children’s ideas about important concepts, like what it means to be alive or smart. In this study, we examined the impact of experience with intelligent technologies on children’s ideas about robot intelligence. A total of 60 children aged 4 through 7 were asked to identify the intellectual, psychological, and biological characteristics of 8 entities that differed in terms of their life status and intellectual capabilities. Results
DATE:
TEAM MEMBERS: Debra Bernstein
resource research Media and Technology
Historically, most of the focus of science education has been on pre-college and college level schooling. Although some of the public's interest and knowledge about science is unquestionably shaped by compulsory schooling, given that the average adult spends only a fraction of their life participating in some kind of formal schooling, we argue that the contribution of school-based science learning to the long-term public understanding of science is limited, particularly for the majority of Americans who do not go on to post-secondary schooling. This article shows that the majority of the
DATE:
resource research Media and Technology
This volume explores the integration of recent research on everyday, classroom, and professional scientific thinking. It brings together an international group of researchers to present core findings from each context; discuss connections between contexts, and explore structures; technologies, and environments to facilitate the development and practice of scientific thinking. The chapters focus on: * situations from young children visiting museums, * middle-school students collaborating in classrooms, * undergraduates learning about research methods, and * professional scientists engaged in
DATE:
TEAM MEMBERS: Kevin Crowley Christian Schunn Takeshi Okada
resource research Public Programs
Children often learn new problem-solving strategies by observing examples of other people's problem-solving. When children learn a new strategy through observation and also explain the new strategy to themselves, they generalize the strategy more widely than children who learn a new strategy but do not explain. We tested three hypothesized mechanisms through which explanations might facilitate strategy generalization: more accurate recall of the new strategy's procedures; increased selection of the new strategy over competing strategies; or more effective management of the new strategy's goal
DATE:
TEAM MEMBERS: Kevin Crowley Robert Siegler
resource research Media and Technology
Two studies examined how parent explanation changes what children learn from everyday shared scientific thinking. In Study 1, children between ages 3- and 8-years-old explored a novel task solo or with parents. Analyses of children's performance on a subsequent posttest compared three groups: children exploring with parents who spontaneously explained to them; children exploring with parents who did not explain; and children exploring solo. Children whose parents had explained were most likely to have a conceptual as opposed to procedural understanding of the task. Study 2 examined the causal
DATE:
TEAM MEMBERS: Jodi Fender Kevin Crowley
resource evaluation Media and Technology
The aim of the work reported here has been to give an overview of the support that the informal sector provides for learning and engagement with science. In addressing this goal, we have taken the view that engagement with science and the learning of science occur both within and without schools. What is of interest is not who provides the experience or where it is provided but the nature and diversity of opportunities for science learning and engagement that are offered in contemporary UK society. Thus in approaching the work we have taken a systems perspective and looked at informal
DATE:
TEAM MEMBERS: John H Falk Jonathan Osborne Lynn Dierking emily dawson Matthew Wenger Billy Wong
resource research Media and Technology
In the spring of 1999, the Board of the National Association of Research in Science Teaching (NARST) established an Informal Science Education Ad Hoc committee, co-chaired by Lynn Dierking and John Falk. The Committee's task was to focus on the organization's positioning in regard to out-of-school science education. After 2 years of work, the committee composed a policy statement, included below, that was presented to, and accepted by, the NARST board. The policy statement defines this arena of research, describes a variety of out-of-school environments in which science learning occurs
DATE:
TEAM MEMBERS: Lynn Dierking John H Falk Leonie Renie David Anderson Kirsten Ellenbogen
resource research Media and Technology
There is no single right way to learn things, and no single place or even moment in which we learn. All learning happens continuously, from many different sources, and in many different ways. There are three main educational sectors, the formal education sector of schools and universities, the workplace, and the free-choice learning sector. Of the three, the most frequently over-looked is the free-choice learning sector. The free-choice learning sector includes museums, television, radio, the Internet, magazines, newspapers, books, parks, community organizations of all types: youth, adult
DATE:
TEAM MEMBERS: Institute for Learning Innovation John H Falk