Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
The adoption of the Next Generation Science Standards (NGSS) means that many educators who adhere to model-based reasoning styles of science will have to adapt their programs and curricula. In addition, all practitioners will have to teach modeling, and model-based reasoning is a useful way to do so. This brief offers perspectives drawn from Lehrer and Schauble, two early theorists in model-based reasoning.
DATE:
TEAM MEMBERS: Kerri Wingert
resource research Informal/Formal Connections
In-class projects can be an effective way for students to learn subject material that relates to authentic problems people address outside of classrooms. Jurow investigated middle-schoolers’ participation in an in-school math project based on the premise of creating a research station in Antarctica. Students’ engagement with the project and meaning making with math content shifted as students navigated through the different and often competing figured worlds of the classroom and “Antarctica.”
DATE:
TEAM MEMBERS: Nicole Bulalacao
resource research Informal/Formal Connections
In this case study, Calabrese Barton and Yang describe how a young person’s strong interest in science (specifically reptiles) outside of school went unrecognized by his school teachers and his family as an aptitude for science. The authors describe how the prevailing view of science, framed in the context of the culture of power, can narrow learners’ perceived opportunities to pursue academic or professional pathways in science.
DATE:
TEAM MEMBERS: Nicole Bulalacao
resource research Informal/Formal Connections
How and why students develop productive science learning identities is a key issue for the education community (see Bell et al, 2009). Carlone, Scott, and Lowder describe the changes in the science identities of three students as they move from fourth to sixth grade. The authors discuss the processes — heavily mediated by race, class, and gender — by which the students position themselves, or are positioned by others, as being more or less competent learners in science.
DATE:
TEAM MEMBERS: Heather King
resource research Media and Technology
Today’s standardized testing methods are too narrow for measuring 21st-century learning that occurs across time and diverse social contexts, from formal to informal and embodied to virtual. This paper uses the concept of “connected learning” to illustrate what 21st-century education involves; it then describes research methods for documenting this learning.
DATE:
TEAM MEMBERS: Jean Ryoo
resource research Public Programs
To improve science education for culturally and linguistically diverse students, schools and communities can create “mutual benefit partnerships” to identify and address local problems. Through the example of the Chicago River Project, Bouillion and Gomez illustrate how such partnerships can connect formal learning contexts with the rich ways communities experience science outside of school.
DATE:
TEAM MEMBERS: Jean Ryoo
resource research Media and Technology
Mobile technology can be used to scaffold inquiry-based learning, enabling learners to work across settings and times, singly or in collaborative groups. It can expand learners’ opportunities to understand the nature of inquiry whilst they engage with the scientific content of a specific inquiry. This Sharples et al. paper reports on the use of the mobile computer-based inquiry toolkit nQuire. Teachers found the tool useful in helping students to make sense of data from varied settings.
DATE:
TEAM MEMBERS: Heather King
resource research Media and Technology
One challenge in scaling up effective educational programs is how to adjust implementation to local contexts. One solution that the authors Penuel, Fishman, Cheng, and Sabelli propose is “design-based implementation research,” (DBIR) in which researchers and practitioners collaboratively identify problems and strategies during implementation while learning from this process to support innovations in new contexts.
DATE:
TEAM MEMBERS: Jean Ryoo
resource research Public Programs
The Dimensions of Success (DoS) observation tool defines and provides rubrics (with levels 1-4) for 12 dimensions that were developed to measure STEM program quality in out-of-school time. This technical report summarizes the development of the instrument and findings from our initial study that included 284 observations in the field across 58 STEM programs in two geographic regions (New England and the Midwest). Data were collected by 46 trained observers who observed in pairs. This report is the initial step in developing a validity argument for the instrument.
DATE:
TEAM MEMBERS: Ashima Mathur Shah Caroline Wylie Drew Gitomer
resource project Public Programs
The Dimensions of Success observation tool, or DoS, pinpoints twelve indicators of STEM program quality in out-of-school time. It was developed and studied with funding from the National Science Foundation (NSF) by the Program in Education, Afterschool and Resiliency (PEAR), along with partners at Educational Testing Service (ETS) and Project Liftoff. In 2014, a technical report was released, describing the tool and its psychometric properties (http://www.pearweb.org/research/pdfs/DoSTechReport_092314_final.pdf). The DoS observation tool focuses on understanding the quality of a STEM activity in an out-of-school time learning environment and includes an explanation of each dimension and its key indicators, as well as a 4-level rubric with descriptions of increasing quality. Today, over 700 people have been trained to use the DoS tool, and over 12 state networks have adopted DoS to measure the quality of their afterschool STEM programming.
DATE: -
TEAM MEMBERS: Program in Education, Afterschool Dr. Ashima Shah Drew Gitomer
resource research Media and Technology
During the first EU-funded project EUSCE/X (European Science Communication Events / Extended), a "White Book" was developed in 2005, containing the experiences of exploring 21 European science engagement events like science festivals. The White Book has 13 chapters ranging from "purpose and philosophy" across "management", "education", "funding" to "European dimension".
DATE:
TEAM MEMBERS: James Potocnik
resource research Media and Technology
This article explains the concepts of disruptive innovation and catalytic innovation, a subset of disruptive innovation. Disruptive innovations challenge industry incumbents by offering simpler, good-enough alternatives to an underserved group of customers, whereas catalytic innovations can surpass the status quo by providing good-enough solutions to inadequately addressed social problems.
DATE:
TEAM MEMBERS: Clayton Christensen Heather Baumann Randy Ruggles Thomas Sadtler