Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Colby Tofel-Grehl Sarah Braden Alfonso Torres
resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Aaron Wilson Mayra Ortiz Xiaohui Wang Sergey Grigorian
resource evaluation Exhibitions
This study collected data from seven planetarium email lists (one per planetarium regional organization in the United States), as well as online survey panel data from residents in each area, to describe and compare those who do and do not visit planetariums.
DATE:
TEAM MEMBERS: Karen Peterman Keshia Martin Jane Robertson Evia Sally Brummel Holly L. Menninger
resource project Media and Technology
Increasing the diversity of the Science, Technology, Engineering, and Mathematics (STEM) workforce hinges on understanding the impact of the many related, pre-college experiences of the nation’s youth. While formal preparation, such as high school course-taking, has a major influence, research has shown that out-of-school-time activities have a much larger role in shaping the attitudes, identity, and career interests of students, particularly those who are members of groups historically underrepresented in STEM fields (Black, Indigenous, Latinx, and/or Pacific Islander). A wide range of both innovative adult-led (science clubs, internships, museum-going, competitions, summer camps) and personal-choice (hobbies, family talk, games, simulations, social media, online courses) options exist. This project studies the variety and availability such experiences to pre-college students. The project is particularly interested in how community cultural capital is leveraged through informal activities and experiences, drawing upon the “funds of knowledge” that culturally diverse students bring to their STEM experiences (e.g., high aspirations, multilingual facility, building of sustaining social networks, and the capacity to challenge negative stereotyping). This study has the capability to begin to reveal evidence-based measures of the absolute and relative effectiveness of promising informal educational practices, including many developed and disseminated by NSF-funded programs. Understanding the ecology of precollege influencers and the hypotheses on which they are based, along with providing initial measures of the efficacy of multiple pathways attempting to broaden participation of students from underrepresented groups in STEM majors and careers, will aid decision-making that will maximize the strategic impact of federal and local efforts.

The project first collects hypotheses from the wide variety of stakeholders (educators, researchers, and students) about the kinds of experiences that make a difference in increasing students’ STEM identity and career interest. Identifying the descriptive attributes that characterize opportunities across individual programs and validating a multi-part instrument to ascertain student experiences will be carried out through a review of relevant literature, surveying stakeholders using crowdsourced platforms, and through in-depth interviews with 50 providers. A sample of 1,000 students from 2- and 4-year college and universities, drawn from minority-serving institutions, such as Historically Black Colleges, Hispanic Serving Institutions, and Tribal Colleges and Universities will serve to establish the validity and reliability of the derived instrument and provide estimates of the availability and frequency of involvement. Psychometric methods and factor analysis will guide us in combining related variables into indices that reflect underlying constructs. Propensity score weighting will be employed for estimating effects when exposure to certain OST activities is confounded with other factors (e.g., parental education, SES). Path models and structural equation models (SEM) will be employed to build models that use causal or time related variables, for instance, students’ career interests at different times in their pre-college experience. The study goes beyond evaluation of individual experiences in addressing important questions that will help policy makers, educators, parents, and students understand which OST opportunities serve the diverse values and goals of members of underrepresented groups, boosting their likelihood of pursuing STEM careers. This project is co-funded by the Advancing Informal STEM Learning (AISL) and EHR CORE Research (ECR) programs.
DATE: -
TEAM MEMBERS: Philip Sadler Remy Dou Monique Ross Susan Sunbury Gerhard Sonnert
resource research Informal/Formal Connections
Presentation slides and narration for the NARST 2022 Annual Conference. In this presentation we summarize findings from our interviewed with undergraduate STEM majors who identify as Latine, homing in on the ways in which they characterize "STEM" and "STEM people" and their descriptions of K-12 experiences that contributed to their characterizations of these concepts.
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian
resource research Informal/Formal Connections
An individual's sense of themselves as a “STEM person” is largely formed through recognition feedback. Unfortunately, for many minoritized individuals who engage in STEM (science, technology, engineering, and mathematics) in formal and informal spaces, this recognition often adheres to long-standing exclusionary expectations of what STEM participation entails and institutionalized stereotypes of what it means to be a STEM person. However, caregivers, who necessarily share cultural backgrounds, norms, and values with their children, can play an important role in recognizing their children's
DATE:
TEAM MEMBERS: Heidi Cian Remy Dou Sheila Castro Elizabeth Palma-D'souza Alexandra Martinez
resource project Public Programs
The call for more science, technology, engineering, and mathematics (STEM) education taking place in informal settings has the potential to shape future generations, drive new innovations and expand opportunities. Yet, its power remains to be fully realized in many communities of color. However, research has shown that using creative embodied activities to explore science phenomena is a promising approach to supporting understanding and engagement, particularly for youth who have experienced marginalization. Prior pilot work by the principal investigator found that authentic inquiries into science through embodied learning approaches can provide rich opportunities for sense-making through kinesthetic experience, embodied imagining, and the representation of physics concepts for Black and Latinx teens when learning approaches focused on dance and dance-making. This Research in Service to Practice project builds on prior work to better understand the unique opportunities for learning, engagement, and identity development for these youth when physics is explored in the context of the Embodied Physics Learning Lab Model. The model is conceptualized as a set of components that (1) allow youth to experience and utilize their intersectional identities; (2) impact engagement with physics ideas, concepts and phenomena; and (3) lead to the development of physics knowledge and other skills. The project aims to contribute to more expansive definitions of physics and physics learning in informal spaces. While the study focuses primarily on Black and Latinx youth, the methods and discoveries have the potential to impact the teaching of physics for a much broader audience including middle- and high-school children, adults who may have been turned off to physics at an earlier age, and undergraduate physical science majors who are struggling with difficult concepts. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The research is grounded in sociocultural perspectives on learning and identity, embodied interaction and enactive cognition, and responsive design. The design is also informed by the notion of “ArtScience” which highlights commonalities between the thinking and making practices used by artists and by scientists and builds on the theoretical philosophy that all things can be understood through art or through science but integrating the two lenses allows for more complete understandings. Research will investigate the relationship between embodied learning approaches, design principles, and structures of the Embodied Physics Learning Lab model using the lenses of physics, dance, and integrated ArtScience to better understand the model. The project employs design-based research to address two overarching research questions: (1) What unique opportunities for learning, engagement, and identity development for Black and Latinx youth occur when physics is explored in the context of the Embodied Physics Learning Lab Model? and (2) How do variations in site demographics and site implementation influence the impact and scalability of the Learning Lab model? Further, the inquiry will consider (a) how youth experience and utilize their intersectional various identities in the context of the activities, structures, and essential elements of the embodied physics learning lab; (b) how youth's level of physics engagement changes depending on which embodied learning approaches and essential element structures are used; (c) the physics knowledge and other skills youth attain through the set of activities; and (d) how, if at all, the embodied learning approaches engage youth in thinking about their own agency as STEM doers. An interdisciplinary team of researchers, choreographers, and youth along with community organizations will co-design and implement project activities across four sites. Approximately 200 high school youth will be engaged; 24 will have the role of Teen Thought Partner. Through three iterative design cycles of implementation, the project will refine the model to investigate which elements most affect successful implementation and to identify the conditions necessary for scale-up. Data will be collected in the form of video, field notes, pre- and post- interviews, pre- and post- surveys, and artifacts created by the youth. Analyses will include a combination of interaction analysis, descriptive data analysis, and movement analysis. In addition to the research findings and explication of the affordances and constraints of the model, the project will also create a curricular resource, including narrative text and video demonstrations of physics concepts led by the teen thought partners, video case training modules, and assessment tools.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Dionne Champion
resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource research Informal/Formal Connections
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
DATE:
TEAM MEMBERS: Maria Ong Janet Smith Lily Ko
resource project Informal/Formal Connections
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.

Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Aaron Wilson Sergey Grigorian Xiaohui Wang Mayra Ortiz
resource research Public Programs
This Knowledge Building Report provides an overview of Project TRUE, including program implementation, as well as the research and evaluation results.
DATE:
TEAM MEMBERS: Karen Tingley Su-Jen Roberts Jason Aloisio JD Lewis J. Alan Clark Jason Munshi-South
resource research Informal/Formal Connections
Hispanic youths have traditionally been marginalized from participation in STEM careers, though efforts have been made to increase diversity in STEM careers through targeted learning interventions for these students. However, these efforts often do not purposefully address STEM identity formation, which is a construct closely related to career choice in STEM. Building on previous work that highlights the value of “science talk”, we focus on the childhood experiences of Hispanic/Latine college students that have informed the construction of their STEM identity and contributed to their decisions
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian