The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.
This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
This research extends the investigator's prior NSF supported work to develop theoretical and empirical understanding of the double bind faced by women of color in STEM fields. That is, their race and gender present dual dilemmas as they move through STEM educational and career paths. The proposed study will identify gaps in our understanding, and identify some of the methodological problems associated with answering outstanding questions about the double bind. The major research question is: What strategies work to enable women of color to achieve higher levels of advancement in STEM academia and professions? The goal is to bring a clearer understanding of the issues which confront women of color as they pursue study of science and engineering, and what factors influence whether they leave or remain in STEM.
The work will employ a highly structured narrative analysis process to identify and quantify factors that have been successful in broadening the participation of minority women in STEM. The research design involves two separate tracks of work: 1) to conduct narrative analysis of primary documents associated with women of color in science; and 2) to conduct site visits and interviews to understand features of programs associated with successful support of women of color in undergraduate and graduate education. The first part is designed to inform the second, with the narrative analysis helping to identify features to look for in site visits and to use in development of interview protocols.
This research will focus on individual and programmatic factors that sustain women of color as they confront barriers to their career goals. It examines institutional strategies and support structures that help women of color ultimately to succeed, and social and pedagogic elements that influence their educational experiences. Although women of color have made some progress over the last three decades towards more equitable participation in STEM fields, the major efforts made to address this issue have not produced the desired outcomes; minority women continue to be underrepresented relative to white women and non-minority men. The factors that account for continued lower participation rates are not yet fully understood.
Beyond the Double Bind is designed to transform the intellectual basis for building future programs that will better enable women of color to be successful in STEM. While focused on women of color, the results will ultimately inform strategies and programs to expand the presence of all women and minorities in STEM.
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS:
Jill CastekMichelle Schira HagermanRebecca Woodland
Awareness of a STEM discipline is a complex construct to operationalize; a learner’s awareness of a discipline is sometimes viewed through the lens of personal identity, use of relevant discourse, or knowledge of career pathways. This research proposes defining engineering awareness through a learner’s associations with engineering practices - fundamental processes involved in engineering such as identifying criteria and constraints, testing designs, diagnosing issues and assessing goal completion. In this study, a learner’s engineering awareness was determined by examining 1) their ability to
This paper provides detailed descriptions of the goals, theoretical perspectives, context, and methods used in A study of collaborative practices at interactive engineering challenge exhibits (the C-PIECE Study), the first of two studies in the Designing Our Tomorrow (DOT) research program. The C-PIECE Study supported foundational and exploratory lines of inquiry related to engineering practices used by families engaging with design challenge exhibits. This paper describes the study background and methods as an anchor to four other products that detail these four specific lines of inquiry and
Our museum-based participatory research (PR) project was a collaboration between researchers and educators in an out-of-school time STEM education program for young people that positions STEM as a tool for community social justice. This project drew on literatures on reflective practice in museums and on research-practice partnerships. Yet following existing approaches did not work for us. Aligning research and pedagogical practices, we co-created practical, reflective, and practice-based data generation methods, calling them “embedded research practices:” context-specific, emergent methods
This brief focuses on a participatory study with the high school program of the Kitty Andersen Youth Science Center (KAYSC) at the Science Museum of Minnesota (SMM). Young people are organized into teams of up to 20 youth with an adult practitioner who delivers programming based on a STEM content area. Their activities and project-based learning are based in both STEM and social justice, coined in the KAYSC as “STEM Justice.”
As part of our study, we wanted to understand youth and adult needs that exist in an informal STEM education program that weaves equity into its core. This brief
The theory of “science capital” is increasingly showing up in formal and informal science education. Both face the common challenge of what is often called a “theory/practice divide”: academic theory not seeming relevant to the day-to-day needs and practices of educators.
This brief shares what happened when practitioners and researchers working with the Kitty Andersen Youth Science Center (KAYSC) at the Science Museum of Minnesota took both theory and practice seriously, reclaiming terms and ideas in service of our work and communities. It explores how an informal science learning (ISL)
This brief shares youth development insights from a museum-based, informal science learning program that uses STEM as a tool for social justice. Key to the success of this program were young people and adults feeling at home in a welcoming, diverse, and inclusive space; activities that focused on connecting and relationships; a holistically supportive space that attended to family and personal needs; shared norms for conversation and expectations; and science content grounded in young people’s lives, experiences, and communities as well as work with community members.
These needs were
In order for children to identify with STEM fields, it is essential that they feel there is a place within STEM for individuals “like them.” Unfortunately, this identification is difficult for Hispanic/Latine youths because of lack of representation and even stereotyping that is widespread in educational institutions in the United States. Some research has been done, though, that suggests there is promise in understanding the ways that parents help children see themselves as “STEM people” in spite of these obstacles. Building on this work, we present some of our own research on the experiences
"Making and Tinkering" links science, technology, engineering and mathematics learning (STEM) to the do-it-yourself "maker" movement, where people of all ages "create and share things in both the digital and physical world" (Resnick & Rosenbaum, 2013). This paper examines designing what Resnick and Rosenbaum (2013) call "contexts for tinkerability" within the social design experiment of El Pueblo Mágico (EPM) -- a design approach organized around a cultural historical view of learning and development. We argue that this theoretical perspective reorganizes normative approaches to STEM education
DATE:
TEAM MEMBERS:
Lisa SchwartzDaniela DigiacomoKris Gutierrez