The MyBEST (Mentoring Youth Building Employable Skills in Technology) project, funded by a grant from the National Science Foundation's Informal Science Education program, concluded its three years of operation in 2006. This youth-based program was intended to provide participants with in-depth learning experiences involving information and design technologies. These experiences had a dual focus: enabling youth participants to gain fluency in using these technologies while showing them how adults apply them in work and academic endeavors. Appendix includes survey.
The Designing Our World (DOW) project centers on science, technology, engineering, and mathematics (STEM) equity and addresses the need for more youth, especially girls, to pursue engineering and fill vital workforce gaps. DOW will integrate tested informal science education (ISE) programs and exhibits with current knowledge of engaging diverse youth through activities embedded in a social context. Led by teams of diverse community stakeholders and in partnership with several local girl-serving organizations, DOW will leverage existing exhibits, girls’ groups, and social media to impact girls’
DATE:
TEAM MEMBERS:
Oregon Museum of Science and IndustryAnne Sinkey
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Nationally, the US has a shortage of computer scientists; a big part of this problem is that girls are discouraged from learning computer science at a very young age. This project tries to address this problem by creating a videogame specifically oriented towards getting middle school girls interested in learning computer science concepts outside traditional programming classes. Based on evidence that stories provide a compelling way to present complicated technical subjects and that girls in particular respond to technology careers as a way to help others, the project is building a videogame called "Gram's House" in which social workers intend to move a fictional grandmother to a retirement home unless the player can outfit her home with sufficient technology for her to remain independent. Solving puzzles in the game requires learning core computer science concepts. Research studies will be conducted to determine whether the videogame is effective at getting girls interested in computer science, at teaching computer science concepts, and whether using stories makes videogames more effective for learning. This project based on an earlier successful prototype uses an iterative research-based design process including paper prototyping, playtesting, and focus groups (N=20) to create age appropriate activities, based on the CS Unplugged series, that support learning concepts from the Data, Internet, Algorithms, and Abstraction sections of the high-school level CS Principles curriculum. A quantitative, quasi-experimental design will be used to determine the overall effectiveness of teaching CS concepts under three types of game conditions: (a) games alone, (b) games with fictional settings, and (c) games with stories. A novel assessment instrument will be developed to assess content learning and qualitative observation using a standard observation protocol will be used to gauge interest and engagement. 70-80 middle school girls will be recruited for afterschool participation in the study in two states. As part of the dissemination efforts, a facilitator's guide, rule book, and materials such as maps and storyboards will be created and shared with the game. In addition, a workshop for computer science and other teachers who are interested in using games to teach CS concepts will be conducted.
Calabrese Barton and colleagues examine the beliefs and science practices of two students in a two-year study across settings. The study seeks to answer the question, “What do girls from non-dominant populations do to author themselves into or out of science, in spite of – or because of – their grades?” The study also examines how structures such as teacher support, community organizations, and school tracking systems promote or hinder opportunities for these students to author identities in science.
In an experimental study, gender differences were found in how middle schoolers identified with scientists on popular TV shows. Male students identified most strongly with male scientists whom they perceived as respected, while female students identified most strongly with female scientists whom they perceived as dominant. The study also analyzed students’ identification with scientists as an effect of the genre of the TV shows.
This study sought to understand what motivates students at the high school and early college level to choose physics. It explored students’ expectations of their study of physics and their priorities for future careers. The researchers intended to contribute strategies to increase the number of females who complete university physics degrees. They also hoped to show that a wider range of perspectives needs to be represented among physics practitioners.
This paper by Mujtaba and Reiss explores tendencies in girls’ and boys’ motivations, attitudes, and perceptions toward studying physics after age 16. Findings suggest that girls who want to continue studying physics understand the material and social benefits it affords. They are also more competitive than other students. However, in general, they have less confidence in their abilities than boys.
This study focused on girls’ engagement with science and how they negotiate identities with and in opposition to science in a three-year study of community-based afterschool initiatives. Rahm conducted a multi-sited ethnography, observing girls’ whose families had recently immigrated to Montreal, Canada and were participating in a community organization creating science newsletters and science fair projects.
This article examines middle school girls’ participation in school-day science classes and out-of-school time science clubs to understand the girls’ identification with and relationship to science. Looking at the girls’ science experiences across settings, researchers compared how the identities developed from these experiences supported or worked against the girls’ future trajectories in STEM.
This paper explores how science-aspiring girls balance their aspirations and achievement with societal expectations of femininity. In-depth interviews revealed two models that the girls tended to follow, termed feminine scientist or bluestocking scientist, and the precarious nature of both of these identities. Archer et al. suggest ways that practitioners can better support girls in their balancing acts.
The Exhibit Designs for Girls' Engagement (EDGE) PI poster provides the background for the research, the research questions, the steps we are taking to answer those questions, our audience and deliverables, and the challenges we've faced in the first year.
DATE:
TEAM MEMBERS:
ExploratoriumToni DancstepVeronica Garcia-Luis
Project STEAM aims to inspire art-interested girls to enter STEM careers through a series of activities, including summer academies that explore the biology and physics of color, science café-style presentations that feature the overlap between art and science, and the development of “kits” that can be used in informal and formal venues (Girl Scouts, science centers, and K-12 classrooms). Project research explores two questions: 1) How does an art-focused approach (STEAM) to teaching science support engagement in scientific practices such as experimentation, observation, and communication of
DATE:
TEAM MEMBERS:
University of Alaska, FairbanksLaura Conner