Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS:
Yuko IkkataiAzusa MinamizakiKei KanoAtsushi InoueEuan McKayHiromi M. Yokoyama
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS:
Alex BellRaj ChettyXavier JaravelNeviana PetkovaJohn Van Reenen
Mathematics is the foundation of many STEM fields and success in mathematics is a catalyst for success in other scientific disciplines. Increasing the participation of women and other under-represented groups in the mathematics profession builds human capital that produces a diverse pool of problem solvers in business and industry, research mathematicians, faculty at all levels, and role models for the next generation. Existing support and enrichment programs have targeted women in mathematics at different stages in their undergraduate and graduate education, with different strategies to building community, creating a sense of belonging, and promoting a growth mind set. These strategies challenge some of the most common obstacles to success, including isolation, stereotype threat, not committing to mathematics early enough, and imposter syndrome. Acknowledging the diversity among women in terms of socio-economic background and educational background, this project proposes to examine the effectiveness of these programs through the lens of two primary questions: (1) Which elements of these programs are most critical in the success of women, as a function of their position along these distinct diversity axes?, and (2) which features of these programs are most effective as a function of the stage of the participant's career? These questions are guided by the rationale that a better understanding of, and improved pathways by, which programs recruit and retain undergraduate and graduate women in mathematics has the strong potential to increase the representation of women among mathematics PhDs nationwide.
This project seeks to increase and diversify the number of professional mathematicians in the United States by identifying and proliferating best practices and known mechanisms for increasing the success of women in mathematics graduate programs, particularly women from under-represented groups. The PIs on this proposal, all of whom are leaders of initiatives that have been active for nearly two decades, will work with experts in management, data collection and reporting, and communications to address the following three challenges: (1) develop a common system of measuring the effectiveness of each element in these initiatives; (2) develop a process for effective, collective decision making; and (3) create connections between existing activities and resources. This project is both exploratory research and effectiveness research. The project team first will explore the contextual factors that serve to support or inhibit female pursuit of mathematics doctorates by interviewing a variety of women who were undergraduate mathematics majors in the past, as well as current professional mathematicians. They then will use this information to better understand the most effective features of various current and past initiatives that are trying to increase the participation of women in advanced mathematics. A key stakeholder meeting will develop a process for effective, collective decision-making, to utilize what the project team learns from the interviews. The leadership team will develop a website with discussion board and social media components to highlight best practices and facilitate a virtual community for women interested in mathematics. Finally, a distillation of program elements and their targeted effectiveness will inform the selection of interconnected activities to test on a scalable model. These prototypes will be implemented at several sites chosen to represent a diversity of constituencies and local support infrastructure.
DATE:
-
TEAM MEMBERS:
Judy WalkerAmi RadunskayaRuth HaasDeanna Haunsperger
Demand for skilled workers in STEM industries is continuing to grow rapidly across the United States. At the same time, postsecondary completion rates in fields such as computer science and engineering lag far behind demand. Academically, calculus is the critical barrier to entry to high-growth, high-wage STEM careers for the 59% of community college students who enter at remedial math levels, greatly diminishing the candidate pool for careers in STEM disciplines. In California, for example, only 4% of community college students advance to calculus in 4 years and therefore never have a chance to begin to train for the STEM careers that dominate the state's economic landscape. This barrier diminishes the candidate pool for STEM careers falling disproportionately on two groups: (1) minority students who are overrepresented in remedial programs; and (2) female students who are underrepresented in higher-level math courses. To broaden participation and expand the pipeline of available STEM talent, the STEM Core Initiative (SCI) implements a model that includes an accelerated and contextualized math course sequence with intensive supportive services designed to serve underrepresented students. The cohort-based program moves students from intermediate algebra to calculus-readiness in two semesters (as opposed to two or more years). A prototype of the SCI model has been implemented at four colleges over the last three years and has resulted in a 20-30 percent increase in math course success rates for participants compared to students enrolled in a traditional math course track. The partnership replicates and scales SCI successes through an enhanced STEM Core pathway model to be implemented at 13 California community colleges and one large and diverse Maryland community college campus, directly serving more than 625 students. Further, as a workforce development program, SCI offers paid internships with leading national and regional employers in computer science and engineering and exposes students to high-growth, high-wage STEM career opportunities.
The one-year calculus-readiness and internship pathway for remedial students is a new approach in eleven of the partner colleges and utilizes a collective impact approach to align industry and workforce development partners. The partnership offers wrap around student support, accelerated and contextualized learning, and expanded high-quality work-based learning experiences including internships. Well-positioned employer partners (such as NASA and the federal energy labs) contribute to the development of a national strategy by assisting community colleges with course contextualization, providing career orientation, and hosting project-based internships. To advance research, SCI employs a comprehensive multiple methods plan to assess the effectiveness of the STEM Core intervention and identify and understand the effective practices that underpin successful implementation of the STEM Core at 14 community colleges in California and Maryland. The evaluation seeks to measure and understand the impacts of STEM Core on student learning, academic and industry engagement, academic momentum, math confidence, and commitment to STEM as well as an understanding of implementation and replication strategies that yield the greatest impact. National dissemination of the results showcase the successes of STEM Core and build capacity to replicate the model.
DATE:
-
TEAM MEMBERS:
Jim ZovalFrank GonzalezMark EaganCourtney BrownMichael VennJim Zoval
Utah Valley University (UVU) with partners Weber State University (WSU) and American Indian Services (AIS) are implementing UTAH PREP (PREParation for STEM Careers) to address the need for early preparation in mathematics to strengthen and invigorate the secondary-to-postsecondary-to-career STEM pipeline. As the preliminary groundwork for UTAH PREP, each partner currently hosts a PREP program (UVU PREP, WSU PREP, and AIS PREP) that identifies low-income, under-represented minority, first-generation, and female students entering seventh grade who have interest and aptitude in math and science, and involves them in a seven-week, three-year summer intensive program integrating STEM courses and activities. The course content blends skill-building academics with engaging experiences that promote a clear understanding of how mathematical concepts and procedures are applied in various fields of science and engineering. Courses are enhanced through special projects, field trips, college campus visits, and the annual Sci-Tech EXPO. The purpose of the program is to motivate and prepare participants from diverse backgrounds to complete a rigorous program of mathematics in high school so that they can successfully pursue STEM studies and careers, which are vital to advancing the regional and national welfare.
UTAH PREP is based on the TexPREP program that originated at the University of Texas at San Antonio and which was named as one of the Bright Spots in Hispanic Education by the White House Initiative on Educational Excellence for Hispanics in 2015. TexPREP was adapted by UVU for use in Utah for non-minority serving institutions and in regions with lower minority populations, but with great academic and college participation disparity. With NSF funding for a two-year pilot program, the project partners are building UTAH PREP through a networked improvement community, collective impact approach that, if demonstrably successful, has the ability to scale to a national level. This pilot program's objectives include: 1) creating a UTAH PREP collaboration with commitments to a common set of objectives and common set of plans to achieve them; 2) strengthening existing PREP programs and initiating UTAH PREP at two or three other institutions of higher education in Utah, each building a sustainable local support network; 3) developing a shared measurement system to assess the impact of UTAH PREP programs, adaptations, and mutually reinforcing activities on students, including those from groups that are underrepresented in STEM disciplines; and 4) initiating a backbone organization that will support future scaling of the program's impact.
DATE:
-
TEAM MEMBERS:
Daniel HornsAndrew StoneVioleta Vasilevska
Young people’s participation in science, technology, engineering and mathematics (STEM) is a matter of international concern. Studies and careers that require physical sciences and advanced mathematics are most affected by the problem and women in particular are under‐represented in many STEM fields. This article views international research about young people’s relationships to, and participation in, STEM subjects and careers through the lens of an expectancy‐value model of achievement‐related choices. In addition it draws on sociological theories of late‐modernity and identity, which situate
DATE:
TEAM MEMBERS:
Maria Vetleseter BoeEllen Karoline HenriksenTerry LyonsCamilla Schreiner
STEM learning ecosystems harness unique contributions of educators, policymakers, families, and others in symbiosis toward a comprehensive vision of science, technology, engineering, and math (STEM) education for all children. This paper describes the attributes and strategies of 15 leading ecosystem efforts throughout the country with the hope that others may use their lessons to deepen rich STEM learning for many more of America’s children.
Our study utilizes data from a national cohort of eighth-grade students to consider how different gender and racial/ethnic subgroups compare to White males in their likelihood to aspire toward a science or math occupation and examine the roles that self-concept, enjoyment, and achievement may play in shaping disparities at this early point in occupational trajectories. We find that the importance of enjoyment, self-concept, and achievement in explaining disparities in science career aspirations relative to White males varies according to the female subgroup considered, such that no singular
DATE:
TEAM MEMBERS:
Catherine Riegle-CrumbChelsea MooreAida Ramos-Wada
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
This report is the result of a project to investigate through a sociocultural lens whether girls-only, informal STEM experiences have potential long-term influences on young women's lives, both in terms of STEM but also more generally. The authors documented young women's perceptions of their program experiences and the ways in which they influenced their future choices in education, careers, leisure pursuits, and ways of thinking about what science is and who does it. This report includes the questionnaire used in the study.