This project will draft a framework to guide citizen science projects in addressing issues of equity, diversity, and inclusion (EDI). Citizen science, sometimes called community science, involves volunteers who use science research procedures to collect valid scientific data for research projects and who often learn much about science in the process. These projects contribute directly to scientific research and often collect data of direct relevance to many communities. Although there are millions of citizen science volunteers, only a small proportion come from marginalized communities. The project will host a series of six, half-day virtual (online) workshops with scholars and practitioners with deep understanding of the participatory sciences and issues related to EDI. Workshop participants will discuss topics relevant to preparing a framework to provide guidance for integrating support EDI practices in citizen science. The project will disseminate the framework and workshop recommendations through publications for researchers and practitioners, a new website that will serve as a hub for relevant resources and EDI professional development, blogposts, and webinars.
This project will focus on EDI issues in institution-led, large-scale, citizen science projects. The project will organize workshops addressing issues relating to: (1) designing multipurpose projects that can be useful for empowering communities with data addressing community needs, providing researchers a large and robust data set, and providing learners with opportunities to develop a deeper understanding of research; (2) developing diverse leadership and engaging marginalized communities in framing research priorities; and (3) supporting strategies across citizen science projects to address barriers to participation, identity professional development needs, and create inclusive models that foster trust, create supportive networks, and build capacity for EDI in citizen science. The workshop will include approximately 20 participants, including researchers, project leaders and practitioners, with a majority of workshop participants belonging to groups underrepresented in science, such as Black, Hispanic, and Indigenous people.
Framing: Broadening participation and achieving equitable outcomes has been a core goal of the science museum field for over two decades. However, how to make progress has proven an intractable problem.
Methods: Focusing on five organizations who officially committed to diversity, equity, access, and inclusion (DEAI) by participating in a national professional development program, the researchers investigate how science museums attempt to enact internally-focused change via a mixed methods case study.
Findings: While these organizations considered a variety of structurally focused change
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS:
Jill CastekMichelle Schira HagermanRebecca Woodland
In this article I critically examine the historical context of science education in a natural history museum and its relevance to using museum resources to teach science today. I begin with a discussion of the historical display of race and its relevance to my practice of using the Museum’s resources to teach science. I continue with a critical review of the history of the education department in a natural history museum to demonstrate the historical constitution of current practices of the education department. Using sociocultural constructs around identity formation and transformation, I
This project will engage community members and youth in 13 rural, tribal, and Hispanic communities in the Four Corners Region of the south western U.S. with the science and cultural assets of water. Water is a significant and scarce resource in this geographic area. The Four Corners Region experiences low annual precipitation and high year-to-year fluctuations in water availability. Thus, water is a topic of great interest to community members, whose lives are shaped by water-related events such as drought, flood, and wildfires. Rural tribal, and Hispanic communities are often underserved with respect to science programming; their public libraries often function as the local science center. The project's inter-disciplinary team will develop, deploy, research, and evaluate an interactive traveling exhibit for small libraries, designed around regional water topics and complemented by interactive programming and community engagement events. Additionally, the team will build local capacity by fostering a community of practice among the host librarians, including participation through a support system--the STAR Library Network--to increase their science programming.
This project creates a traveling exhibit and complementary programming around water topics. Through an exhibit co-design model, communities will provide input in the exhibit development, identify water topics that are critical to them, and engage the multi-generational audiences. The exhibit merges the captivating attraction of water with the underlying science content and community context, giving patrons the opportunity to explore these topics through active learning stations, informational panels, citizen science-based activities, and an interactive regional watershed model. Artistic representations of water will be developed by community groups and incorporated into the exhibit as a dynamic display element.
Project goals are to:
Spark interest in and increase understanding of water as a critical resource and cultural asset across rural, tribal, and Hispanic communities in the Four Corners Region.
Increase availability of and access to engaging programming for underserved rural, tribal, and Hispanic communities focusing on the science and cultural aspects of water in the Four Corners Region.
Build capacity for libraries to implement water-focused science programs, and increase available science learning and science communication resources tailored to these informal learning settings.
Foster a Community of Practice (CoP) for participating librarians to support the development of their programming and content knowledge.
Advance the body of research on informal learning environments and their role in developing community members' science ecosystems and science identities, particularly in library settings.
The project team will rigorously assess the extent to which program approaches and components stimulate patrons' interest in science, increase science knowledge, and support building a personal science identity. The model is based on the STEM Learning Ecosystems Framework. Robust evaluation will guide the program development through a front-end needs assessment and iterative revision cycles of implementation strategies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.
The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.
By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Todd BoyetteJill HammJanice AndersonCrystal Harden
Informal STEM education institutions seek to engage broader cross sections of their communities to address inequities in STEM participation and remain relevant in a multicultural society. In this chapter, we advance the role that evaluation can play in helping the field adopt more inclusive practices and achieve greater equity than at present through evaluation that addresses sociopolitical contexts and reflects the perspectives and values of non-dominant communities. To do this for specific projects, we argue that evaluation should privilege the voices and lived experiences of non-dominant
In this participatory research project, a partnership between the Kitty Andersen Youth Science Center (KAYSC) and the Department of Evaluation and Research in Learning at the Science Museum of Minnesota, participants are working to rename and reclaim theory and research methods so as to foster relevance and equity. We have renamed the theory of science capital: "science capitxl" signals its roots in equity work and invites questioning. We are using what we have called "embedded research practices" for data generation and analysis. This poster was shared at the 2019 AISL PI meeting.
This poster was presented at the 2019 NSF AISL Principal Investigators meeting.
The poster describes the Rural Activation and Innovation Network, in which four Arizona regions were selected for their uniqueness in geography and demographics to provide insights about barriers and solutions to implementing ISE experiences in rural communities.
This research paper critically explores the common definitions and perceptions of Making that may potentially disenfranchise traditionally underrepresented groups in engineering. Given the aspects of engineering design that are commonly integrated into Making activities, the Maker movement is increasingly recognized as a potentially transformative pathway for young people to developing early interest and understanding in engineering. However, “what counts” as Making can often be focused heavily on electronic-based and computational forms of Making, such as activities that involve 3D printers