This article describes the Multimedia Arts Education Program (MAEP), an ongoing, intensive after school computer-mediated art technology program begun in 1996 by the Tucson Pima Arts Council (TPAC) in Tucson, Arizona. This five-semester program targets at-risk middle school youth from disadvantaged families. Students worked with professional artist/teachers, learning to do computer graphics and publishing, language arts and word processing, computer animation and video production.
Both scholarly literature and popular media often depict predominantly negative and one-dimensional images of boys, especially African-American boys. Predictions of these boys’ anticipated difficulties in school and adulthood are equally prevalent. This paper reports qualitative research that features case studies of nine urban boys of color, aged nine to eleven, who participated in an afterschool program where they learned to create digital multimedia texts. Drawing on an analysis of the children’s patterns of participation, their multimodal products, and their social and intellectual growth
DATE:
TEAM MEMBERS:
Glynda HullNora KenneyStacy MarpleAli Forsman-Schneider
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
The MyDome project will bring 3D virtual worlds for group interaction into planetaria and portable domes. Advances in computing have evolved the planetarium dome experience from a star field and pointer presentation to a high-resolution movie covering the entire hemispherical screen. The project will further transform the dome theater experience into an interactive immersive adventure. MyDome will develop scenarios in which the audience can explore along three lines of inquiry: (1) the past with archeological reconstructions, (2) the present in a living forest, and (3) the future in a space station or colony on Mars. These scenarios will push the limits of technology in rendering believable environments of differing complexity and will also provide research data on human-centered computing as it applies to inquiry and group interactions while exploring virtual environments. The project proposes to engage a large portion of the population, with a special emphasis on the underserved and under-engaged but very tech-savvy teenage learner. Research questions addressed are: 1. What are the most engaging and educational environments to explore in full-dome? 2. What on-screen tools and presentation techniques will facilitate interactions? 3. What are the limitations for this experience using a single computer, single projector mirror projection system as found in the portable Discovery Dome? 4. Which audiences are best served by exploration of virtual hemispherical environments? 5. How large can the audience be and still be effective for the individual learner? What techniques can be used to provide more people with a level of control of the experience and does the group interaction enhance or diminish the engagement of different individuals? 6. What kind of engagement can be developed in producing scientific and climate awareness? Does experiencing past civilizations lead to more interest in other cultures? Does supported learning in the virtual forest lead to greater connection to and understanding of the real forest? Does the virtual model space experience excite students and citizens about space exploration or increase the understanding of the Earth's biosphere? The broader impacts of the project are (1) benefits to society from increasing public awareness and understanding of human relationships with the environment in past civilizations, today?s forests and climate change, and potential future civilizations in space and on Mars; (2) increasing the appeal of informal science museums to the tech-savvy teenage audience, and (3) significant gains in awareness of young people in school courses and careers in science and engineering. The partners represent a geographically diverse audience and underserved populations that include rural (University of New Hampshire), minority students (Houston Museum of Natural Science) and economically-distressed neighborhoods (Carnegie Museum of Natural History). Robust evaluation will inform each program as it is produced and refined, and will provide the needed data on the potential for learning in the interactive dome environment and on the optimal audience size for each different type of inquiry.
DATE:
-
TEAM MEMBERS:
Annette SchlossKerry HandronCarolyn Sumners
Constraints on learning, rather than being unique to evolutionarily privileged domains, may operate in nonprivileged domains as well. Understanding of the goals that strategies must meet seems to play an especially important role in these domains in constraining the strategies even before they use them. THe presente experiments showed that children can use their conceptual understanding to accurately evaluate strategies that they not only do not yet use but hat are more conceptually advanced than the strategies they do not use. In Experiment 1, 5-year-olds who did not yet use the min strategy
The authors present an exploratory study of Black middle school boys who play digital games. The study was conducted through observations and interviews with Black American middle school boys about digital games as an informal learning experience. The first goal of the study is to understand the cultural context that Black students from economically disadvantaged inner-city neighborhoods bring to playing digital games. The second goal of the study is to examine how this cultural context affects the learning opportunities with games. Third, the authors examine how differences in game play are
DATE:
TEAM MEMBERS:
Betsy James DiSalvoKevin CrowleyRoy Norwood
The aim of the work reported here has been to give an overview of the support that the informal sector provides for learning and engagement with science. In addressing this goal, we have taken the view that engagement with science and the learning of science occur both within and without schools. What is of interest is not who provides the experience or where it is provided but the nature and diversity of opportunities for science learning and engagement that are offered in contemporary UK society. Thus in approaching the work we have taken a systems perspective and looked at informal
The project DIG: Scientists in Alaska's Scenery will perform proof-of-concept on integrating a tourist's visit with place-based stories of meaningful science research in the Arctic. DIG (Digitally Integrated Guide) will widen the general public's interaction with the cultural and natural environment by allowing them to access Web sites and load their handheld mobile devices with engaging descriptions of research. Access can occur before, during, or after their visit - even if the visit takes them far from computers, electricity and the Internet. The creation of user-friendly access to technology and to scientists' stories will provide a new information tool for the public. For these tourists, or others interested in research in Alaska, opportunities to learn directly from the scientists themselves are almost non-existent. Moreover, tourists have no capability to link such research with places they visit. DIG's place-based outreach will be delivered using standard media (broadcast TV, publications) and social media (Web, facebook, twitter, etc.) and mobile devices. DIG demonstration project will join scientists, Alaska Native peoples, tourists, media makers, interpreters and technology experts in inquiry-based learning designed to maximize engagement by the general public. The radically different approach to Arctic-focused science documentary proposed here fosters the close collaboration of the scientist and media maker. Video podcasts (vodcasts) and supporting Web-based materials will be created for three current research projects in Alaska, with a focus on NSF-funded projects. Such projects include anthropology and cultural/linguistic study, paleontology, climate change research, biology, and other areas. Delivery and evaluation will emphasize tourists who visit, or are planning to visit, the National Parks of Alaska. These tourists are accessible to the research team, and they are motivated to seek out information about the places they are visiting. If successful, our approach to science education and outreach will augment their knowledge about research in Alaska, resulting in a deeper and more informed experience.
DATE:
-
TEAM MEMBERS:
Gregory NewbyLiz O'ConnellDeborah Perry
In August 2009, the Program Evaluation and Research Group (PERG) at Lesley University contracted with the project's PI at the University of New Hampshire (UNH) to evaluate My Dome: Defining the Computational and Cognitive Potential of Real Time Interactive Simulations in an Immersive Dome Environment, an NSF funded grant. The project focuses on creating interactive experiences in immersive virtual environments, and builds off previous work the PI and co PIs have done in developing films and immersive experiences in domes and traveling domes. The project includes staff from the Carnegie Museum
You can use CyberTracker on a Smartphone or handheld computer to record any type of observation. CyberTracker, which requires no programming skills, allows you to customize a series of screens for your own data collection needs. Our vision is to enable you to be part of a worldwide environmental monitoring network. Our mission is to help you improve environmental monitoring by increasing the efficiency of data gathering and to improve observer reliability.
The objective of this youth media project is to provide 14-24 year olds with training and hands-on experience in engineering, and the physical and biological sciences. The project is designed around core practices that engage youth in original research and inquiry through experimentation, development, and creative use of new technologies and tools to communicate STEM to the public. Youth Radio project participants in Oakland, CA, Atlanta, GA and Washington, DC include 540 youth, 80% of whom are low-income and/or youth of color, plus another 400 youth via off-site outreach in schools and community centers. Core deliverables include: (1) "Brains and Beakers," eight live events per year where a visiting STEM researcher brings his/her work out of the lab and onto the stage at Youth Radio facilities, demonstrating key principles and discoveries and interacting with youth participants; (2) "Youth Radio Investigates," an annual 6-part multimedia series, where youth partner with university and industry-based researchers to explore the veracity of scientific claims applied to products and services and they use every day; (3) The "Application Development Lab," where youth develop, create and disseminate online embeddable and downloadable applications (12 annually) that serve real needs in youth communities. The digital media produced by the youth will be broadcast by National Public Radio and distributed online through various sites including iTunes and BoingBoing.net, one of the most frequently visited technology-focused sites on the web. Project advisors include STEM researchers in universities as well as highly experienced and successful new media technology developers. Project partners include National Public Radio, KQED, the California Academy of Sciences, and the Oakland Unified School District. This project builds on the successful prior work (NSF #0610272) that initiated a Science and Technology program within the Youth Radio organization. The summative evaluation by Rockman et al will measure how the program affects students' science and technology knowledge, skills, and attitudes. It will build on the evaluation from the prior NSF funded project (#0610272) that highlighted the organizational and staff growth processes as Youth Radio discovered how to design and implement successful, sustainable STEM programs. Rockman will evaluate the new programs (Youth Investigates, Brains and Beakers, and the Application Lab), measuring the following STEM-related student outcomes/impacts: perceptions of selves as producers/creators of science or technology; attitudes toward science and perceptions of scientists; understanding the process of scientific inquiry and research and/or technology skills development; and understanding or interest in careers in science or technology (based on National Research Council report, 2009). Data will be collected from the youth at the Oakland site and from the other Youth Radio bureaus to determine which aspects of the program transfer to multiple sites and which ones are unique to a specific location or set of circumstances. Methods include surveys of student attitudes, participant focus groups, interim assessments, objective skills assessments, and interviews. This project provides an innovative new model for collaborations between STEM researchers and under-represented youth resulting in digital media that impacts the youth as well as the public's understanding and engagement in science.
TERC is partnering with the Toxics Action Center to enhance the capacity of environmental organizations to teach mathematical literacy skills to low-income citizens, mostly women of color. Secondary collaborators include four environmental organizations around the country. The project is (1) developing math- and statistics-rich educational materials that help non-scientists interpret environmental test results, (2) developing training materials that help environmental organization personnel provide quantitative literacy training to citizens, (3) helping environmental organizations institutionalize project resources, and (4) evaluating the impact of project activities on environmental organizers, community members, and the general public. Project deliverables include bilingual, print- and web-based instructional materials (including videos) for environmental organizations to use with staff and community members; training sessions to create a cadre of environmental organization leaders who can conduct environment-focused, math training workshops; a communications toolkit for dissemination to journalists who cover environmental issues; and a resource-rich project web site.