Based on nearly two decades of museum programming for low-income Hispanic and African American girls at the Miami Science Museum, this extension service project employs a train-the-trainers approach to build a network of museum-based Extension Agents dedicated to helping informal science educators attract the interest and support the persistence of minority girls, grades 6-12, currently underrepresented in STEM studies. Led by the Miami Science Museum, the collaboration brings together an experienced group of institutions with representation from the informal science, gender research, and engineering communities. In addition to the Museum, the Expert Project Team consists of key staff from the Association of Science-Technology Centers (ASTC), and SECME Inc. (formerly the Southeastern Consortium of Minorities in Engineering), who serve as the conduit for the participation of minority engineering professional organizations. An advisory/research panel of researchers in gender in STEM, whose work complements those of the project investigators, works closely with the Expert Project Team to prepare Extension Agents from ten geographically dispersed museums, who in turn provide a range of training and peer mentoring services to the practitioner community of informal science educators in science-rich institutions nationwide. Participating museums include: Connecticut Science Center (Hartford, CT), New York Hall of Science (New York, NY), Maryland Science Center (Baltimore, MD), Miami Science Museum (Miami, FL), COSI (Columbus, OH), St. Louis Science Center (St. Louis, MO), Louisville Science Center (Louisville, KY), Sci-Port (Shreveport, LA), Explora (Albuquerque, NM), and California Academy of Sciences (San Francisco, CA).
DATE:
-
TEAM MEMBERS:
Judy BrownLaura Huerta MigasMichele Williams
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.
The LTER Network is an innovative platform for training the next generation of natural scientists in collaborative, integrative, long-term research in ecology. An important objective of the network is to share knowledge with other communities. The LTER Network Office addresses this objective by managing a Communication and Outreach program that targets key communities—scientists, policy makers, educators and students, and the mass media as a proxy of the rest of the non-specific audiences—and maintain strategic partnerships and collaborations that provide improved access to these communities.
Informal science education is a broad field of research marked by fuzzy boundaries, tensions, and muddles among many disciplines, making for an unclear future trajectory (or trajectories) for the field of study. In this commentary, I unpack some of the hidden dimensions, tensions and challenges the five articles raise or point to implicitly in terms of theory, methodology, and future research. I explore ideas to think with in terms of learning pathways or trajectories and time-space dimensions of science learning. I also explore future dimensions for partnerships, collaborations, boundary
If we truly wish to promote science or STEM education, then it would seem that the joining of resources and expertise from the communities of formal schooling and informal science education institutions or ISEIs (museums, aquariums, and the like) would be an important early step. Yet creating such connections between teacher and museum remain a challenge for both teachers and informal educators. This study employs a communities of practice lens (Wenger, 1998) to provide a deeper explanation for the challenges inherent in those programs and experiences (field trips, outreach programs, teacher
This proposed four-year effort envisions a new approach to promoting science literacy through science journalism as a subject of study. It is premised on a critical set of assumptions: (a) Most citizens have the need to interpret scientific information found in popular media (e.g., newspapers, magazines, online resources, science-related television programs); (b) science journalism provides reliable, well-researched science information; (c) authentic science writing provides motivation to learn; and (d) standards and rubrics specifically developed for evaluating students' science-related expository text do not exist. Thus, the project approaches science journalism as a means to assist students to investigate and coherently write about contemporary science and to learn to base assertions and descriptions on reliable, publicly available sources. To this end, the project aims to develop, pilot, and evaluate a model of instruction that focuses on the following aspects: (a) Identifying questions of both personal and public interest; (b) evaluating contemporary science-related issues; (c) making available highly regarded sources of information as exemplars (in-print, online, interviews); (d) synthesizing information; (e) assessing information based on fact-checking using the five Ws (who, what, where, when, and why); and (f) coherently explaining claims and evidence. A hypothesis and a set of research questions guide this effort. The hypothesis is the following: If participating students successfully attain the fundamental elements of the proposed model, then they will become more literate and better critical consumers and producers of scientific information. The main guiding research question of the proposed activity is the following: Does the teaching of science journalism using an apprenticeship model, reliable data sources, and science-specific writing standards improve high school students' understanding of science-related public literacy? Secondary questions include (a) Is the teaching of science journalism an efficacious, replicable and sustainable model for improving science literacy?; (b) How useful are science-related standards and rubrics for scaffolding and evaluating students' science writing and science literacy?; and (c) What is the nature of the engagement in science that this apprenticeship invites?
DATE:
-
TEAM MEMBERS:
Alan NewmanJoseph PolmanE. Wendy SaulCathy FarrarAlan Newman
This paper explores how participating in a program spanning an informal science institution and multiple school sites engaged youth with science in a different way. In particular, teens in the program selected and researched science topics of personal interest, and then authored, revised, and published science news stories about those topics in an authentic publication venue with an outside editor. Through five case studies analyzed according to a sociocultural framework for engagement understood as involving actions, interests and identifications, the authors describe how the news story
Socioscientific issues in connection to energy production, use or influence on climate change continue to be at the forefront of local, national, and global debates. The pressing nature of these issues requires citizens not only to understand relevant disciplinary knowledge but also to have the ability to use that knowledge to take action. This paper investigates the work of youth in an after school science program designed to examine socioscientific issues as they took educated action in science by putting on a “green carnival” for their peers and community members in relation to green energy
In this paper, we explore the details of one youth's science-related learning in- and out-of-school at the time of her participation in an ethnography of youth science and technology learning across contexts and over time. We use the Cultural Learning Pathways Framework to analyze the youth's interests, and the related sociocultural, historical, material, and affect-laden practices in which she and her family participated. The following question guided our analysis: How do everyday moments—experienced across settings, pursuits, social groups, and time—result in scientific learning, expertise
The University of Arkansas Center for Math and Science Education (CMASE), one of eleven mathematics and science centers on university and college campuses around the state, provides quality resources and materials to the home, private and public education community. The Arkansas NASA Educator Resource Center, located within CMASE, is the state's dissemination point for education materials provided by NASA. Resources and school/classroom presentations are free of charge. The main objectives of both centers are to provide: (1) K-16 education outreach to the home, private and public Northwest Arkansas education community; (2) quality professional development for pre-service and in-service teachers at local, regional, state and national levels; (3) access points for dissemination of educational materials, resources and information; and (4) links to common education allies throughout the state and nation.
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help
DATE:
TEAM MEMBERS:
Lisa KomoroskeSarah HameedAmber SzoboszlaiAmanda NewsomSusan Williams
Education and Community Engagement is one of three program directorates in the UNAVCO. Our primary areas of focus include: (1) Professional development/training: We broaden the community using UNAVCO-supported tools, data, and instrumentation through technical training and online resources, (2) educational materials: we facilitate the development and dissemination of geodesy-focused educational materials, (3) community communications: we facilitate greater communication, collaboration, access and dissemination of UNAVCO science and education to both the UNAVCO and broader community, and (4) geo-workforce development: we facilitate the development of a robust, well-trained and diverse geoscience workforce with the knowledge, skills, and abilities to tackle emerging scientific and societal issues.