Skip to main content

Community Repository Search Results

Current Search

resource research Public Programs
In mid-2007, the Sciencenter's executive director, Charlie Trautmann, traveled to Europe to survey a wide variety of science museums, centers, and other informal educational organizations and learn how they communicate the subjects of sustainability and global warming to the public. His report includes a new tool, called the "Museum Sustainability Index," which museums can use to assess their own progress in both becoming more sustainable organizations and communicating the science of sustainability to the public.
DATE:
TEAM MEMBERS: Charles Trautman
resource research Public Programs
This review conducted by the National Institute on Out-of-School Time (NIOST) explores the current discussion and research findings on STEM (Science, Technology, Engineering, and Math) in out-of-school time and reflects on the ways the INSPIRE program model (see Appendix A) incorporates research-based practice in implementing STEM education experiences in out-of-school time. The purpose of the literature review and analysis project is to inform the INSPIRE program managers during the planning and implementation stage of INSPIRE.
DATE:
TEAM MEMBERS: Wellesley College
resource research Media and Technology
Based on the premise that one component of NASA's pre-college education program is intended to support and enact school reform, the Committee for the Evaluation and Review of NASA's Pre-College Education Program requested an analysis of how the NASA Explorer School (NES) Model aligns with other national models of school-wide improvement and reform. The purpose and focus of this paper is to summarize key elements of major school improvement and reform models as well as specific content reform models from the literature, and to analyze the extent to which there is alignment between these models
DATE:
TEAM MEMBERS: Susan Mundry
resource project Public Programs
The Decapoda - shrimp, lobsters, and crabs - are an economically important, diverse group of animals whose geologic history extends back 400 million years. Living representatives, numbering over 15,000 species, are global in distribution and nearly ubiquitous in oceanic and non-oceanic environments. They exert a major impact on ecosystems; understanding the dynamics of their fossil record will illuminate their historical impact on ecosystems. We will test the hypothesis that decapods are arrayed in a series of discrete evolutionary faunas; remarkably, the vast array of living and fossil decapods in diverse interrelated groups have exploited four basic body plans repeatedly. Other hypotheses to be tested are that the Decapoda have repeatedly adopted a limited number of baupläne, or generalized architectures, throughout their history; that they have experienced explosive evolutionary radiations followed by periods of no determinable change; and that they are generally resistant to mass extinction events. These hypotheses will be tested using a unique dataset compiled and assessed by the Principle Investigators: a compilation of all fossil decapod species, arrayed in a classification scheme including fossil and living taxa, with geologic and geographic ranges of all species, including a phylogeny (i.e. "family tree") for many sub-groups within the Decapoda. The dataset will be expanded to include ecological data for each taxon and will be entered into the Paleobiology Database, an NSF-supported vehicle for analyzing the fossil record. Employing its methodology, patterns of diversity and macroevolution of the decapods will be generated at levels ranging from the entire Order to species level. This will result in a comprehensive analysis of macroevolutionary patterns of this major group for the first time. Available paleoecological data derived from field studies and published records will be used to determine the effects of various environmental factors such as seafloor conditions, reef development, water depth, and temperature on morphology, extinction survivorship, and diversity. Because decapods have a remarkable range of morphological variation preservable in the fossil record, the diversity of the groups of decapods can be assessed in relation to their morphological characteristics. Defining the history of taxa with specialized morphology will permit recognition of body plans that have been exploited by different decapod groups throughout the history of the clade.

Intellectual merit. This study will provide the most comprehensive analysis of macroevolution of the Decapoda yet conducted, all based upon a unique dataset that is internally consistent by virtue of its having been developed entirely by the investigators. It will document the significance of employing a high resolution, species-level database for interpretation of diversity. The hypotheses and conclusions derived here will provide a model and the foundation for future work on Decapoda, Arthropoda, and macroevolution of well-constrained groups. It will provide a test for the efficacy of PBDB data versus a constrained dataset assessed by specialist systematists.

Broader impacts. The work will introduce undergraduate students at Kent State at Stark, an undergraduate campus, and Kent State at Kent, to research that involves paleoecological, paleogeographical, and functional morphological elements which, in turn, will be communicated to other students. Because decapods are known to virtually everyone, they form an excellent group to use to inform the public about ancient patterns of diversity and the relationship between the morphology of organisms, variations in their environmental requirements, and their adaptability to different physical conditions. This will be conveyed in a professionally constructed display which has the potential to be exhibited in museums and universities around the country. Small kits designed for use in elementary and middle schools will be available to allow students to make their own observations about the adaptations of decapods to their environment and its effect on diversity. Published papers and presentations on results of research at meetings will be prepared throughout the course of the research. Because the study of modern biodiversity is a concern of the general public, presentations to broader audiences as well as geology classes will provide a broad historical context for understanding modern patterns of diversity. Data entered into Paleobiology Database and Ohio Data Resource Commons will be openly available to other researchers and the general public. Combined, the databases will assure archival storage and public access, following a proprietary period.
DATE: -
TEAM MEMBERS: Carrie Schweitzer Rodney Feldmann
resource project Media and Technology
Discovering and understanding the temporal evolution of events hidden in text corpora is a complex yet critical task for knowledge discovery. Although mining event dynamics has been an important research topic leading to many successful algorithms, researchers, research and development managers, intelligence analysts and the general public are still in dire need of effective tools to explore the evolutionary trends and patterns. This exploratory project focuses on developing and validating a novel idea called narrative animation. Narrative animation uses animated visualizations to narrate, explore, and share event dynamics conveyed in temporally evolving text collections. Film art techniques are employed to leverage the animated visualizations in information organization and change detection, with the goals of enhancing analytical power and user engagement. A prototype system called CityStories is being developed to generate narrative animations of events in cities derived from web-based text. If this novel, risky research is successful, it is expected to yield fundamental results in narrative animation that can advance the current paradigm in information visualization and visual analytics by developing novel techniques in using animations for presenting and analyzing dynamic abstract data at a large scale. The pilot system CityStories system is expected provide a novel network platform for education, entertainment, and data analytics. It will engage general users such as students, teachers, journalists, bloggers, and many others in web information visualization and study. Results of this research will be disseminated through publications, the World Wide Web, and collaborations with researchers and analysts. The project web site (http://coitweb.uncc.edu/~jyang13/narrativeanimation/narrativeanimation.htm) will include research outcomes, publications, developed software, videos, and datasets for wide dissemination to public.
DATE: -
TEAM MEMBERS: Ye Zhao
resource research Media and Technology
This paper presents a summary of each of 10 evaluations conducted of NASA educational programs. The paper begins with a table outlining the titles of the evaluations and who conducted them, the date of the report, the evaluation questions, the evaluation design or methods and brief comments on the quality of each report. After the table each report is considered in more depth through an overview of what the evaluation included as well as a critique of the evaluation questions, methods and findings. The paper concludes with an overall commentary on the set of evaluations.
DATE:
TEAM MEMBERS: Frances Lawrenz
resource research Public Programs
The purpose of this paper is to explore and discuss the role of practical work in the teaching and learning of science at school level. It emphasizes practical work as a means for students to learn about the nature of science.
DATE:
TEAM MEMBERS: Robin Millar
resource research Public Programs
Reports from the NSF, NRC, AAAS, and others urge over and over that we must teach "science as science is done," that "science is a way of knowing," that our goal should be to impart "scientific habits of mind," and that learning must be learner-centered and oriented toward process. Fine. But what does this really mean for science education, and especially laboratory education?
DATE:
TEAM MEMBERS: Jane Maienschein
resource research Public Programs
The purpose of this paper is to examine the role of laboratory-based science from a perspective that synthesizes developments in (1) science studies, e.g., history, philosophy and sociology of science and (2) the learning sciences, e.g., cognitive science, philosophy of mind, educational psychology, social psychology, computer sciences, linguistics, and (3) educational research focusing on the design of learning environments that promote dynamic assessments. Taken together these three domains have reshaped our thinking about the role inquiry, and in turn the laboratory, has in science
DATE:
TEAM MEMBERS: Richard Duschl
resource research Public Programs
This paper explores the role of laboratory and field-based research experiences in secondary science education by summarizing research documenting how such activities promote science learning. Classroom and field-based "lab work" is conceptualized as central components of broader scientific investigations of the natural world conducted by students. Considerations are given to nature of professional scientific practice, the personal relevance of student's understanding of the nature of empirical scientific research, and the role of technology to support learning. Drawing upon classroom learning
DATE:
TEAM MEMBERS: Philip Bell
resource research Public Programs
The goal of this article is to provide an integrative review of research that has been conducted on the development of children's scientific reasoning. Scientific reasoning (SR), broadly defined, includes the thinking skills involved in inquiry, experimentation, evidence evaluation, inference and argumentation that are done in the service of conceptual change or scientific understanding. Therefore, the focus is on the thinking and reasoning skills that support the formation and modification of concepts and theories about the natural and social world. Major empirical findings are discussed
DATE:
TEAM MEMBERS: Corrie Zimmerman
resource research Informal/Formal Connections
This paper will review literature on learning science in K-8 classrooms by asking and answering three major questions: Who learns science in classrooms? How is science learned in classrooms? What science is learned in classrooms? These questions will be addressed from a sociocultural perspective, which means that the unit of analysis (both theoretically and methodologically) should include both the individual and the social world. Thus, the proposed connections between causes and outcomes must include contextual as well as psychological factors.
DATE:
TEAM MEMBERS: Ellice Forman Wendy Sink