The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.
This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants. This pilot study, Akeakamai (Hawaiian, literally lover of wisdom, scientist, scholar), will explore the convergence of contemporary Western science topics with indigenous Hawaiian culture-based science experiences as a mechanism to strengthen STEM perceptions, cross-cultural science collaboration, and multi-generational community engagement with STEM. The work is grounded in the notion that STEM learning within the context of local informal indigenous community settings should be culturally responsive and culturally sustaining, and should privilege indigenous epistemologies. If successful, the results of this pilot could provide valuable insights on effective approaches to developing and implementing culturally consistent and sustainable multigenerational STEM engagement among Native Hawaiians and Pacific Islanders, and across the Pacific region.
Over a two-year duration, the study will address three research questions. (1) To what extent does inclusion of culture into curriculum designed for informal Culture-Science Explorations mitigate perceived barriers to participation in science? (2) What barriers do community members perceive to limit their participation in science? (3) What are the areas of consonance between Native Hawaiian and Western scientific approaches to knowledge and learning? Approximately 200 predominantly Native Hawaiian and Pacific Islanders, ranging in age from 8 - 85 years old, will participate in the pilot. The research team will collect participant data during all phases of the social intervention, a suite of culture-science exploration experiences held at the Halau Inana, a Native Hawaiian community collaboration space. The intervention will employ pedagogical methods that are responsive to Hawaiian cultural norms to deliver content that integrates across the interfaces of Western science and technology and indigenous knowledge, and incorporates Hawaiian language. A rigorous external evaluation will also be conducted. The results of the research and evaluation will be broadly disseminated. Ultimately, the project aims to develop a conceptual and practical cross-cultural, multi-generational framework for community-based science learning in Hawai'i that can serve as a model for future research and programs that extend into and beyond indigenous communities of the Pacific region.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Helen TurnerJonathan BakerChrystie Naeole
resourceprojectProfessional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is a two-day conference, along with pre- and post-conference activities, with the goal of furthering the informal science learning field's review of the research and development that has been conducted on data visualizations that have been used to help the public better understand and become more engaged in science. The project will address an urgent need in informal science education, providing a critical first step towards a synthesis of research and technology development in visualization and, thus, to inform and accelerate work in the field in this significant and rapidly changing domain.
The project will start with a Delphi study by the project evaluator prior to the conference to provide an Emerging Field Assessment on data visualization work to date. Then, a two-day conference at the Exploratorium in San Francisco and related activities will bring together AISL-funded PIs, computer scientists, cognitive scientists, designers, and technology developers to (a) synthesize work to date, (b) bring in relevant research from fields outside of informal learning, and (c) identify remaining knowledge gaps for further research and development. The project team will also develop a website with videos of all presentations, conference documentation, resources, and links to social media communities; and a post-conference publication mapping the state of the field, key findings, and promising technologies.
The initiative also has a goal to broaden participation, as the attendees will include a diverse cadre of professionals in the field who contribute to data visualization work.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. A frequently overlooked but significantly under-represented STEM audience is people who live in rural settings. The proposed conference is the first of its kind to bring together key innovators and experts in rural Informal STEM education, to address this question: How can we build on recent innovations to create more effective and scalable pathways for informal STEM learning in rural communities?
The conference will focus primarily on advancing informal STEM education for rural youth, but will also include some participants who cross boundaries, to situate the work in an ecosystem perspective: informal-formal education, childhood-adult education, rural ecosystems and economic drivers for STEM related jobs. The provisional list of topics will be refined through a pre-conference survey of participants, and will be followed with a report that includes survey responses, conference discussion, and final recommendations by participants. The conference will be held in Washington D.C. to enable policymakers to attend.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for STEM learning in a variety of settings. Many military veterans who seek to transition to higher education or workforce pathways find it challenging to translate the skills they acquired during service to civilian STEM settings and the modern day workforce. Yet many returning veterans have significant experience with STEM fields, including mapping and geospatial technologies, because of their unique functions and service assignments. Such geospatial skills are useful for location-aware industries, citizen science and public services. At the same time, military and veteran families have been largely overlooked as an important public audience for focused informal STEM learning. Informal learning events called "mapathons" which enlists participants to mapping exercises and create geospatial data on open platforms that address authentic needs in their communities and the broader society at large. When seeking to further their education upon returning from service, veterans' typical options have included some form of formal higher education. Mapathons may be a feasible bridging activity that (a) recognizes veterans' unique, valuable, and in-demand STEM skills and (b) supports lifelong learning.
This pilot research seeks to understand how informal learning experiences such as mapathons are viable pathways for veterans to transition to the civilian workforce. The conceptual approach pays attention to the realities of the life course of military and veteran families, especially building upon theories of change related to transitions to include a spatial component. The foundation of the project's intellectual merit is its explicit inclusion and sensitivity to place, scale, and spatial behavior, building directly from findings of prior NSF-funded projects and the evidence base for informal learning pathways. The research will contribute to knowledge about workforce development by addressing the questions: (1) To what extent do veterans recognize that their extant skills acquired, in military settings, are translatable to civilian STEM settings?; (2) How can informal learning experiences help a diverse veteran population increase awareness of the translatability of geospatial workforce competencies, build confidence in technology skills, and motivate interest to pursue formal studies in STEM fields in general?; and (3) What pathways do which veterans favor when they could pursue formal STEM higher education learning among an array of choices online or at regional sites, and why? The study will engage 320 participants at 8 sites across Texas; employ in-depth surveys and interviews; and use spatial analysis to elicit insights about the research questions.
Military and veteran families include a significant number of people from group typically underrepresented in STEM fields. Supporting more veterans to transition successfully to higher education pathways or careers in STEM is a vital service to the nation. This study on informal to formal pathways for veterans will include an innovative understanding of the importance of place in meaning-making and in the reality of choices they consider during the transitions of their life course.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Patricia SolisMelanie HartDennis Patterson
With snow providing water for about 2 billion people worldwide and playing a major role in the Earth's climate through its high albedo and insulation properties, on-going alterations in global snow resources pose real and extremely expensive societal adaptation/mitigation problems. The project goals are to:
Create opportunities for the public to learn about the vital role that snow plays in climate, water resources, and human lives.
Produce a better understanding of how culture affects informal Science, Technology, Engineering, Mathematics (STEM) learning.
The deliverables include:
An outreach program in Alaska that will visit 33 remote native villages;
A 2,000 square foot traveling exhibition on snow produced by the Oregon Museum of Science and Industry (OMSI) and exhibited at two additional museums during the life of the award;
Learning research, which will examine how the wide variation of cultural relationships to snow impacts learning in museum exhibitions. Each of these components will be evaluated over the course of the project. The travelling exhibition will tour to three museums per year for eight years, with an anticipated cumulative audience of over one million.
The focus on snow will highlight a fascinating yet under-appreciated part of the Earth system. The project aims to educate the public about snow and to produce a more informed and thoughtful public in the face of potential expensive and difficult snow-related societal decisions. Through informative displays, graphics, models, and other material, the project will engage traditionally under-served communities (at Native/remote villages) in Alaska, where a strong cultural connection to snow exists, as well as communities across the U.S. where the connection to snow can range from strong to weak. Across this cultural gradient, the project will explore through oral interviews and surveys the public response to various types and designs of informal science learning (ISL) displays, attempting to isolate and control for the effect of cultural vs. individual response to the materials. Informal learning theory specifies using front-end exploration of individual visitor-content relationships to guide exhibit design. This project's research goal expands that approach to include the effects of cultural engagement with a topic to develop more general tools to guide and improve the design process. The project is led by the University of Alaska Fairbanks (UAF) in collaboration with OMSI researchers from the COSI (Center of Science and Industry), Center for Research and Evaluation (CRE), and evaluators at the Goldstream Group. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Public engagement with science (PES) is about dialogue between scientific and technological experts and public audiences about societal questions that science can inform but not answer. In making decisions about these kinds of societal questions, social values and personal experience play roles equal to or greater than the one played by science. Rather than focusing exclusively on science itself, PES focuses on discussing problems that communities view as worth solving; the information society needs and wants from scientists; the potential risks, benefits, and consequences of new technologies
Scientists (and engineers) wishing to conduct public engagement do so in the context of established disciplinary norms and complex institutional systems that may support or limit their success. This report seeks to convey the known complexity, unique challenges, and opportunities for universities to better support for scientists in their public engagement work. The report is intended to drive discussion towards deeper exploration and development of actionable next steps.
This is the executive summary of report from Workshop III: Academic Institutions, part of the Support Systems for
As part of ongoing efforts to support a diverse and robust engineering workforce and ensure that children and adults from all communities have the engineering and design thinking skills to succeed in a science, technology, engineering, and mathematics (STEM)-rich world, identity has become a growing focus of research and education efforts. In order to advance our understanding of engineering-related identity negotiation within informal STEM education contexts, we conducted an in-depth, qualitative investigation of six adolescent girls participating in an afterschool engineering education
Due to the dynamic nature of many fields of science, most adults will acquire the majority of their science information after they leave formal schooling. Future public-policy decisions will require adults to have an understanding of the practice and nature of modern science and technology. A major source for continued learning is science media and journalism, which has the capacity to provoke and increase science curiosity and the value of science.
In partnership with Jacobs Media Strategies, the Cultural Cognition Project at Yale Law School and Texas Tech University, KQED, the NPR and PBS
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This RAPID project was submitted in response to the NSF Dear Colleague letter (NSF 17-128) related to Hurricane Harvey along the Gulf Coast. The PBS NewsHour team will produce 9 stories for national distribution using multiple broadcast and online channels that will engage the public and increase their understanding of the science and engineering research being conducted to better predict and mitigate the impact of future storms. Hurricane Harvey was the first of several storms in 2017 that hit first Texas then Florida and the Caribbean creating unprecedented devastation. This project aims to help the public better understand the science behind storms, and how scientists and engineers are actively collecting data, developing new models, using new technologies, and studying the environmental recovery. The PBS NewsHour team has in place experienced science journalists, production facilities, and a distribution network that can quickly develop media stories based on the work of scientists and engineers in the field, many of whom are funded by NSF. The NewsHour has a strong track record of telling stories that are scientifically accurate yet highly engaging and understandable to a diverse audience. Researchers from several universities including Texas A&M, Rice University, and Norfolk State University are advising the NewsHour team and may also be featured in some of the media. The team will also use their existing collaboration with education researchers at New Knowledge, Inc. to seek audience feedback on proposed/produced media.
The potential audience reach of these stories is extensive. Stories that are broadcast on the nightly PBS NewsHour reach 1.6 million people. The NewsHour's website currently reaches 6 million while their YouTube channel has 40 million views. They have a growing audience of younger viewers who mainly get their news on social media channels such as ScienceScope and Apple News. EXTRA is another service offered just for teachers.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Innovations in Development project will research and produce science media based on the role that interest, motivations, identify, and values play in engaging diverse, millennial audiences in a dynamic media environment. Using a design-based research approach the project team will develop Millennial Science Media Engagement Profiles (a set of categories describing different audience types who engage with science media in different ways). It will design and test science media content (text, audio, graphics, video), placement and platform use for millennials; and make conclusions around science media storytelling and outreach tactics that spark interest and engagement, the precursors to learning. Broader impacts include contributing significant new knowledge about millennials interest and engagement in science while they are at a stage in life making critical career decisions. It will also provide a model for other science media producers providing new protocols for creating targeted digital media for this specific audience. And further impacts include reaching a large national audience through social media. The project is a collaboration between KQED and researchers at Texas Tech.
The research will focus on the distinctive experience and interest of "millennial" science consumers. It builds on a previously funded national survey and series of focus groups with millennials looking at their science media preferences versus other generations. With these survey results this project will build profiles of millennial audiences based on two factors: level of science curiosity and level of science media engagement. The researchers will use a previously validated Science Curiosity Scale. The Millennial Profiles will be validated in two ways: through performance-based survey questions and through internet audience behavior analysis using existing digital analysis tools. KQED will produce different science media content and send it to certain groups conducting A/B testing to validate profiles online. The profile assumptions will continue to be tested until the team can effectively predict the kinds of science content that different profile groups prefer. The research will use a study protocol used in other domains to bridge the gap between lab and real-world settings. The protocol involves four steps: initial hypothesis development; ante experimental simulation; real-world communication; and ex post experimental simulations. Following the profile validation, the protocol will be used to test the efficacy of new KQED Science content, testing the variables that contribute to millennial engagement.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.