How should we convey science—both its findings and its value to society—to the many members of the public who lack either scientific training or intense interest in scientific progress? In October 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to explore ways of better presenting science—both specific findings and the processes of discovering and confirming—to the public. Participants discussed ways to develop data-enriched narratives that communicate to the public and policy makers in an engaging and rigorous way the work of basic research. They also
DATE:
TEAM MEMBERS:
National Academies of Sciences, Engineering, and Medicine
From 2014-2016, Pacific Science Center continued and expanded the Science Technology Engineering and Math Out-of-School-Time (STEM-OST) program with the purpose of delivering programs to stem the summer learning loss. Specifically, the project expanded to new venues in the Puget Sound (Washington) region; modified the lessons and activities so they also served students in grades K-2; aligned the curriculum with the Next Generation Science Standards (recently adopted by the Washington State Legislature) and increased the number of Family Science Days and Family Science Workshops offered to
From 2013-2016, Pacific Science Center, implemented the Exploring Earth Systems Sciences (EESS) project with the purpose of developing and delivering scripted demonstrations utilizing the Science On a Sphere (SOS) technology in order to promote understanding of and increase interest in Earth systems sciences. Specifically, the grant allowed the Science Interpretation team to research and write 20-minute presentations, targeted towards visitors aged 11 and older, about nine unique topics such as: climate change, weather, seasons, or the Polar Regions. Staff were then provided training in
The Zoo and Aquarium Action Research Collaborative (ZAARC) was an NSF-funded project (DRL-1114335) involving four zoos and two aquariums, plus informal science education researchers from TERC (a non-profit educational research and development company in Cambridge, MA), Oregon State University and California State University, Long Beach. The goal of ZAARC was to investigate how action research might be carried out by educators in zoos and aquariums, and how its implementation would impact both the individual practitioners and their institutions.
Students can present their classroom work in a number of ways. One popular approach is an open house at the school. Such events often feature booths where parents and students can participate in various learning activities. Because these open houses usually only cater to the students and families associated with that particular school, the impact is limited to those people, and the wider local community is not engaged in students’ learning. Additionally, in rural areas, these types of events are sometimes difficult for families to attend during weekdays or weeknights, due to distance and work
DATE:
TEAM MEMBERS:
Robin CooperKim ZeidlerDiane JohnsonJennifer Wilson
resourceresearchProfessional Development, Conferences, and Networks
The goal of this journal—to engage educators from both formal and informal STEM learning settings in areas of mutual activity and interest—involves different forms of “boundary crossing.” We are looking at both research and practice. We are thinking about teaching and learning. We are looking across in-school and out-of-school settings. Although students cross these boundaries every day, we professionals tend to spend a lot of time in just one of them. In each field, we have our own cultural practices—ways of speaking, rules of interaction, tools, and routines.
The Science Museum of Minnesota (SMM) leverages a professional educator team (“instructors”) comprised of about two dozen individuals who facilitate both formal and informal educational programming in the museum, in K–12 classrooms, and at community-based sites. The experienced instructors of SMM’s Lifelong Learning Group bring innovative programs to both students and their teachers. Recognizing that long-term experiences can have a profound impact on students and teachers, SMM works to develop multiyear relationships based on collaboration. This article focuses primarily on SMM’s well
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.
The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.
The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
SciGirls Strategies is a National Science Foundation–funded project led by Twin Cities PBS (TPT) in partnership with St. Catherine University, the National Girls Collaborative, and XSci (The Experiential Science Education Research Collaborative) at the University of Colorado Boulder’s Center for STEM Learning. This three-year initiative aims to increase the number of high school girls recruited to and retained in fields where females are traditionally underrepresented: technical science, engineering, technology, and math (STEM) pathways. We seek to accomplish this goal by providing career and
DATE:
TEAM MEMBERS:
Rita KarlBradley McLainAlicia Santiago
The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.
STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.
SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.
Maker Corps is a program delivered by the Maker Education Initiative (Maker Ed) to increase organizational capacity to develop and deliver maker programing. Since its inception in 2013, the program has grown to support over 100 organizations by providing professional development, connections to a community of other maker educators and individualized support. Over time the program elements have changed in response to feedback from participants, collaboration with evaluators and shifts in focus for Maker Ed’s goals. In the spirit of maker education – tinkering, observing, responding, iterating –
Large gaps in achievement and interest in science and engineering [STEM] persist for youth growing up in poverty, and in particular for African American and Latino youth. Within the informal community, the recently evolving “maker movement” has evoked interest for its potential role in breaking down longstanding barriers to learning and attainment in STEM, with advocates arguing for its “democratizing effects.” What remains unclear is how minoritized newcomers to a makerspace can access and engage in makerspaces in robust and equitably consequential ways.
This paper describes how and why