The Civilians, Inc., a theatre company in Brooklyn, NY, is producing The Great Immensity, a touring play with songs and video that explores our relationship to the environment, with a focus on critical issues of climate change and biodiversity conservation. The play has been created with a network of partners including the Princeton Environmental Institute and Princeton Atelier Program/Lewis Arts Center, which will maintain an ongoing relationship with the project. The play uses real places and stories drawn from interviews conducted by the artists to create an experience that is part investigative journalism and part inventive theater. Attendance at the performances is projected to be about 75,000. A major goal of the project is to help the public better appreciate how science studies the Earth's biosphere and to promote an inquisitive curiosity about our place in the natural world. The initiative also intends to create and evaluate a new model for how theater can increase public awareness, knowledge, and engagement with important science-related societal issues. Project deliverables include the development and testing of online content, podcasts, and videos as well as special community education and outreach efforts in each community where the play is staged. Performances will be accompanied by post-performance panel discussions with the artists, local scientists and policy makers. After the completion of the initial tour, the play will be published, licensed, and made available to other theaters to produce independently.
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
The MyDome project will bring 3D virtual worlds for group interaction into planetaria and portable domes. Advances in computing have evolved the planetarium dome experience from a star field and pointer presentation to a high-resolution movie covering the entire hemispherical screen. The project will further transform the dome theater experience into an interactive immersive adventure. MyDome will develop scenarios in which the audience can explore along three lines of inquiry: (1) the past with archeological reconstructions, (2) the present in a living forest, and (3) the future in a space station or colony on Mars. These scenarios will push the limits of technology in rendering believable environments of differing complexity and will also provide research data on human-centered computing as it applies to inquiry and group interactions while exploring virtual environments. The project proposes to engage a large portion of the population, with a special emphasis on the underserved and under-engaged but very tech-savvy teenage learner. Research questions addressed are: 1. What are the most engaging and educational environments to explore in full-dome? 2. What on-screen tools and presentation techniques will facilitate interactions? 3. What are the limitations for this experience using a single computer, single projector mirror projection system as found in the portable Discovery Dome? 4. Which audiences are best served by exploration of virtual hemispherical environments? 5. How large can the audience be and still be effective for the individual learner? What techniques can be used to provide more people with a level of control of the experience and does the group interaction enhance or diminish the engagement of different individuals? 6. What kind of engagement can be developed in producing scientific and climate awareness? Does experiencing past civilizations lead to more interest in other cultures? Does supported learning in the virtual forest lead to greater connection to and understanding of the real forest? Does the virtual model space experience excite students and citizens about space exploration or increase the understanding of the Earth's biosphere? The broader impacts of the project are (1) benefits to society from increasing public awareness and understanding of human relationships with the environment in past civilizations, today?s forests and climate change, and potential future civilizations in space and on Mars; (2) increasing the appeal of informal science museums to the tech-savvy teenage audience, and (3) significant gains in awareness of young people in school courses and careers in science and engineering. The partners represent a geographically diverse audience and underserved populations that include rural (University of New Hampshire), minority students (Houston Museum of Natural Science) and economically-distressed neighborhoods (Carnegie Museum of Natural History). Robust evaluation will inform each program as it is produced and refined, and will provide the needed data on the potential for learning in the interactive dome environment and on the optimal audience size for each different type of inquiry.
DATE:
-
TEAM MEMBERS:
Annette SchlossKerry HandronCarolyn Sumners
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
The intent of this project is to use social network methods to study networks of afterschool and informal science stakeholders. It would attempt to create knowledge that improves afterschool programs access to informal science learning materials. This is an applied research study that applies research methods to improving access to and enactment of informal science education programs across a range of settings. The investigators plan to collect data from 600 community- and afterschool programs in California, conduct case studies of 10 of these programs, and conduct surveys of supporting intermediary organizations. The analysis of the data will provide descriptions of the duration, intensity, and nature of the networks among afterschool programs and intermediary agencies, and the diffusion patterns of science learning materials in afterschool programs. The project will yield actionable knowledge that will be disseminated among afterschool programs, intermediary organizations, funding agencies, and policymakers to improve the dissemination and support of afterschool science learning opportunities. The project is focused on free-choice settings where every day the largest numbers of children attend afterschool programs at schools and in other community settings. It seeks information about what conditions are necessary for informal science programs to significantly impact the largest possible number of children in these settings.
DATE:
-
TEAM MEMBERS:
Barbara MeansAnn HouseCarlin LlorenteRaymond McGhee
The University of Massachusetts Lowell conducted 1.5-day conference in the fall of 2011, titled "Learning on the Go: Using Out-of-Home Media to Communicate Climate Science." The conference, held at the Lowell Inn and Conference Center, brought together approximately 125 professionals and students in climate science, communications, out-of-home media, social science, informal and formal science education, and educational psychology with the goal of exploring opportunities for applying out-of-home media to communicating science to the public, with a particular emphasis on climate change science. "Out-of-home media" is defined as any type of communication that reaches individuals while they are out of the home, including mobile media, billboards, mass transit placards, posters, etc. The intent was to consider how informal science education and its impacts on learning can be expanded via the adaptation of such media to the goals of ISE. Conference proceedings and podcasts of keynote sessions will be made available on a conference Web site. Conference evaluation will be conducted by Arbor Consulting Partners.
Exploring the Euteleost Tree of Life represents the education and outreach of the Euteleost Tree of Life assembling the tree of life research grant (NSF DEB Grant No. 0732819; PI: Ed Wiley) it includes a curriculum activity and a interactive fish tree. Investigating a Deep Sea Mystery, a curriculum module for high school and undergraduate students follows the research of project collaborator Dave Johnson (Smithsonian Institution) to explore deep sea fish phylogeny. The module includes an investigation of What is a fish?, fish anatomy and morphology, and how different lines of evidence (morphological and molecular) can be used to study evolutionary relationships. A fisheye view of the tree of life is a web module featuring an interactive fish tree of life highlight with a series of mini-stories Web material is still in the early stages of development, and will include a splash page with a simplified clickable fish tree through which the different.
CENTC's (Center for Enabling New Technologies Through Catalysis) outreach is focused on partnerships with science centers. Initially we worked with the Pacific Science Center (PSC) to train our students in effective communication of science concepts to public audiences. Later we developed a short-term exhibit, Chemist - Catalysts for Change in the Portal to Current Research space. As part of the CCI/AISL partnership program, we partnered with Liberty Science Center to create an activity on a multi-touch media table, "Molecule Magic." We are currently developing another exhibit with PSC.
The Association of Science-Technology Centers, the Institute for Learning Innovation, University of Pittsburgh Center for Learning in Out-of-School Environments, the Visitor Studies Association and other collaborators stewarded development of an Informal Science Education Resource Center (ISERC) to support ongoing improvement of the national infrastructure for informal science education. Activities included a clearinghouse for ISE-funded awards to enable others to learn from and build upon prior work, identification of practices and findings, and leadership development, with emphasis on increasing diversity in the field.
Glaciers: A Chronology of Climate Change is a CRPA project that seeks to explain the historical cycling of glaciers in the context of climate change. By using chemical isotopes (Beryllium 10), the age of rocks that have been covered with glacier ice and exposed to sunlight later can be determined fairly accurately. Through this method, the glaciation cycles have been determined for the last 70,000 years. In collaboration between the Lamont-Doherty Earth Observatory at Columbia University and the American Museum of Natural History (AMNH), this project is designed to impact adult audiences, youth in grades 6th-12th, and teachers writ large. The research results shall be expressed via an eight-minute high definition film for large screen viewing in the \"Science Bulletins\" section of the AMNH and the affiliated museums. A rigorous front-end evaluation will be used to inform the presentation and assess audience impact. Subsequent formative evaluations are designed to measure the learning impact of the film and the retention of longer term concepts. It is anticipated that more than 700,000 individuals will have access to current, scientifically accurate data and related information on glaciation cycles and climate change through the educational film and website. Materials will be easily accessible to teachers and the film will be closed captioned in both English and Spanish.
DATE:
-
TEAM MEMBERS:
Joerg SchaeferGeorge DentonMichael Kaplan
The idea that there are models in existence for electricity and how to improve its generation and utilization is an important quest in light of our resources. This CRPA project will stimulate the target audience\'s thinking by describing the relationships between electricity, nanoscience, and superconductivity. An audience of 4th-8th graders, parents, and teachers will come away from watching the video with a new sense of science and its possibilities. This project is a collaboration between physics faculty, educators at the University of Kansas Natural History Museum, a communications professional, and the Bazillion Pictures of Kansas City, Missouri along with independent evaluators. An animated video of 8-10 minutes is intended to engage, entertain, and provoke thought on how electricity works and how it could be used/generated in nano-molecules to derive superconductivity. Most individuals turn on the electrical switch and use the result without the slightest understanding of how electricity arrived at the switch, how it was generated and what resources are needed for it to be there at the "flip of a switch." Further, most do not consider or have sufficient background knowledge to understand how the efficiency and use of this resource might be improved. This project could bridge this gap which if successful would be highly transformative in the public understanding of science.
The goal of the FOCUSSS project is to engage high school students in a need-to-know pursuit for learning science that leads to the discovery of sustainable resources and practices for use in their communities. The project is a collaboration among Loyola University Chicago, Adler Planetarium, the Chicago Museum of Science and Industry, and four local, urban high schools to construct student and family activities involving essential science concepts and tools within a sustainability context. Through this project, high school students engage in school and family activities around specific themes related to sustainable resources and practices in their communities, such as the availability and access to nutritious food, the quality of air or availability of clean water resources, the effective use of energy resources, or similar topics. The project intends to help students develop as informed and responsible citizens who utilize the principles and tools of basic science for their decisions and actions. The blended instructional model that deeply involves family and community will be studied for its potential to make formal learning relevant to the lives of children and to the health of the community. As an exploratory project, the project tests a curriculum design that bridges formal and informal education and draws upon the resources in the community. Students interact with online learning communities that include their teachers, their families, fellow students, and sustainability organizations. Participating teachers are involved in intensive workshops that focus on developing sustainability principles within inquiry-based science curricula and lessons plans. Service projects provide opportunities for students to invite their families to participate and be supported in family workshops at local museums and in site visits to organizations involved in related initiatives. Data collection includes surveys administered to students and participating family members, observations, interviews, classroom assessments, and other open-ended instruments intended to surface themes and related variables. These will inform the design of the materials and activities as well as the assessments. The project deliverables include fully implemented classroom lessons supported by family projects and online sustainability courses for students and families. The project fosters students and families connecting to their communities, resources and organizations in order to improve the quality of their neighborhoods and to promote individual, family, and public health.