Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and study a cyber-enhanced informal learning environment to improve observational practices and classification skills among citizen scientists. The project will focus on the taxonomic identification skills needed by volunteers to provide high-quality data for water quality monitoring of local streams, lakes, estuaries, wetlands, and ground water resources. To make the task of identifying freshwater insects easier and more engaging, the project will develop an innovative educational resource, the Macroinvertebrate Identification Training Environment, that will use zoomable high-resolution images, interactive media, and annotations of diagnostic features to improve perceptual skills. The goal is to increase the confidence and accuracy of volunteers engaged in identification tasks, while also increasing the reliability and quality of the data they are generating for purposes of scientific research and conservation efforts. This interdisciplinary design research and development project will use networked gigapixel image technology to create a visual environment where users can move seamlessly from full panoramic views of macroinvertebrates to extreme close-ups, with embedded text, images, graphics, audio, and video at various locations and zoom levels. This system will be developed in concert with a cognitive apprenticeship training model designed through a series of design studies. The design studies will be conducted over a two-year period and will include examination of the distinguishing features of various biomonitoring programs, reviews of existing training materials and strategies, expert performance analysis of professional entomologists, and development of user interface features. Project developers will collaborate with five regional volunteer biomonitoring organizations to engage a diverse set of volunteers in the design process, including rural populations, older adults, urban youth, and the trainers who support them. The project work will consist of four integrated strands of activity: design-based learning research, creation of an entomological teaching collection, cyberplatform development, and the external evaluation of the training system. The resulting Macroinvertebrate Identification Training Environment will be evaluated in terms of its impacts on volunteer accuracy, confidence, and engagement in taxonomic classification activities related to macroinvertebrates. The impacts of the learning system on trainers and volunteer biomonitoring organizations will also be examined.
DATE: -
resource project Public Programs
Disparities in engineering participation and achievement by women and individuals from traditionally underserved racial and ethnic groups have been persistent. Approaches outside the context of university and school reform, including approaches to supporting interest development in early childhood, have not been fully considered by educators and policymakers. This AISL Pathways project will focus on engineering, which has emerged as a critical topic in the STEM education field and a prominent aspect of educational standards and policies. Building on a strong empirical and theoretical base, it will lay the foundation for future research efforts to advance the field's limited understanding of early childhood engineering-related interest development, especially through parent-child interactions; create research tools for studying engineering-related interest in young children; and identify effective strategies for supporting long-term engineering interest pathways. "Head Start on Engineering" is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Through an asset-based approach and authentic engagement with families and community organizations, Head Start on Engineering will pilot research and program activities that are sensitive to the constraints of low-income families and build on the resources and funds of knowledge within these communities. It will test and refine an innovative, theoretical model of early childhood interest development. The overall design of the pilot study will be mixed-method and short-term longitudinal, with data collected before, during, and after program implementation from participating families. Quantitative measures will allow for consistent comparisons across groups and within families, while qualitative data will help explore complex factors and processes hypothesized in the theoretical framework and related to program implementation. This work will allow the team time to address unanswered questions and issues around how to feasibly operationalize key aspects of the revised theoretical model in preparation for more extensive, longitudinal and experimental investigations as part of the next phase of the project. Understanding and honoring parents' beliefs, knowledge, and experiences is central to this project. In developing and implementing both the programs and research activities, the team will adopt culturally responsive and asset-based perspectives. The Pathways project is a collaboration between the Institute for Learning Innovation (ILI), a nonprofit organization dedicated to the advancement of lifelong, free-choice learning for all communities through research, practice, and policy initiatives; Mt. Hood Community College Head Start program; the Oregon Museum of Science and Industry (OMSI), a nationally renowned science museum; and the Center for STEM Education at the University of Notre Dame. The project involves families with four-year-old children who attend the Head Start program. The collaboration between educators, community organizations, and researchers and the integrated approach to research and program development will ensure that study findings translate to practical and effective education strategies and that future research efforts are well-grounded in the realities of practitioners and learners.
DATE: -
resource project Public Programs
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This study will contribute to these goals by providing empirical evidence about how and under what circumstances science museums, science centers, and other designed settings for informal science education (ISE) can change so that they will reach more diverse audiences with the full range of their educational activities. This study will deepen understanding of equity norms and practices at ISE organizations, as well as the internal and contextual factors that shape them. The project builds on a unique opportunity provided by the widely known and critically acclaimed exhibition "RACE: Are We So Different?" After traveling to dozens of museums and science centers, and being seen by over three million people, RACE is returning home to the Science Museum of Minnesota (SMM) where it was created. Strand 1 of this study will examine the processes underlying organizational change at SMM as it attempts to use RACE to leverage organization-wide change. In Strand 2, the project team will compare the experiences of ISE organizations around the country that hosted RACE, focusing on the conditions that influence reflection and lead to (or prevent) lasting impact. These two studies will inform the design of Strand 3: a national survey on equity norms and practices, and the potential for equity-related change, in designed settings for ISE. Four research questions guide all project activities: 1)How can such Informal Science Education organizations leverage an unusual event, such as a traveling exhibition, to catalyze and sustain change in their equity-related norms and practices? 2) How and when does the deep reflection required to change entrenched norms and practices manifest itself in ISE organizations that attempt to change their equity norms and practices? 3) What contextual factors support or oppose the achievement and maintenance of organization-wide changes in equity norms and practices? 4) How common are these supportive and opposing conditions in the institutional field of museums and science centers, and how prevalent are different norms and practices related to equity?
DATE: -
resource project Public Programs
Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities, creating an unprecedented opportunity to engage a wide range of participants in mathematics that is both purposeful and powerful. To date, this opportunity has been almost universally unexploited. The conference, which will take place at and in collaboration with the New York Hall of Science, will gather fifty researchers and practitioners from informal mathematics education and the burgeoning "making and tinkering" movement for two days to collaboratively generate approaches to integrating mathematics in making and design environments and programs. The project, which includes pre- and post-conference activities, will produce a sampler of Math in Making activities, a guidebook, a white paper for research and practice, a retrospective online discussion, and further dissemination of project deliverables. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Through the conference and pre- and post-conference activities, the project team will: - Initiate and sustain conversations between researchers and practitioners; - Establish collaborations that lead to changes in the way math is framed and highlighted in making and design environments; - Create resources to help people in the making/design community highlight the math in their environments; and - Frame a research agenda to guide studies of mathematical reasoning and attitudes towards math in making and design environments. The work includes an extensive evaluation process of the conference and of pre- and post-conference activities.
DATE: -
resource project Media and Technology
The range of contemporary "emerging" technologies with far-reaching implications for society (economic, social, ethical, etc.) is vast, encompassing such areas as bioengineering, robotics and artificial intelligence, genetics, neuro and cognitive sciences, and synthetic biology. The pace of development of these technologies is in full gear, where the need for public understanding, engagement and active participation in decision-making is great. The primary goal of this four-year project is to create, distribute and study a set of three integrated activities that involve current and enduring science-in-society themes, building on these themes as first presented in Mary Shelley's novel, Frankenstein, which will be celebrating in 2018 the 200th anniversary of its publication in 1818. The three public deliverables are: 1) an online digital museum with active co-creation and curation of its content by the public; 2) activities kits for table-top programming; and 3) a set of Making activities. The project will also produce professional development deliverables: workshops and associated materials to increase practitioners' capacity to engage multiple and diverse publics in science-in-society issues. The initiative is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project by Arizona State University and their museum and library collaborators around the country will examine the hypothesis that exposing publics to opportunities for interactive, creative, and extensive engagement within an integrated transmedia environment will foster their interest in science, technology, engineering and mathematics (STEM), develop their 21st century skills with digital tools, and increase their understanding, ability, and feelings of efficacy around issues in science-in-society. These three distinct yet interlocking modes of interaction provide opportunities for qualitative and quantitative, mixed-methods research on the potential of transmedia environments to increase the ability of publics to work individually and collectively to become interested in and involved with science-in-society issues.
DATE: -
TEAM MEMBERS: Edward Finn Steve Gano Ruth Wylie Rae Ostman David Guston
resource project Public Programs
The goal of the project is to research ways in which the teaching of basic computing skills can be integrated into after-school choral programs. The team will study how to adapt the interdisciplinary, computing + music activities developed to date in their NSF-funded Performamatics project with college-aged students to now introduce middle school-aged students to computing in an informal, after-school choral program. They will investigate how to leverage the universal appeal of music to help students who typically shy away from technical studies to gain a foothold in STEM (Science, Technology, Engineering, and Mathematics) by programming choral music. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The team will use a qualitative and quantitative, mixed-methods approach to study four research questions: (1) Can middle school-aged children follow the connections from singing to digitized sound to MIDI and back to music and learn to program using the songs they like to sing? To encourage students to become involved with manipulating sounds and programming music on their own computers, the approach will employ Audacity and Scratch, two free music recording, editing, and generation platforms. The team will study how well programming of music helps them acquire STEM skills by assessing the complexity and efficacy of the programs they can learn to code. (2) Can programming their individual parts help students learn to sing in three- and four-part harmony? The main focus is on learning of STEM, but research on this question will evaluate whether programming skills can help students learn about music too. (3) What resources, models, and tools (RMTs) are necessary to integrate STEM education into a middle school after-school choral program? The team will work with local middle schools to research techniques for integrating computing into after-school choral programs without disrupting their musical focus. They will identify what choral teachers need in order to do this integration, and they will devise and evaluate techniques for adding STEM skills to the students' choral experience. (4) Can the involvement of adults who match the students' racial and/or cultural backgrounds have a positive effect on the "people like me don't (or can't) do that?" belief that so often stifles efforts to attract underrepresented groups to STEM? They will actively seek to involve students of underrepresented groups in the program by recruiting adult role models from these groups who are involved with both music and computing. They will use attitudinal surveys to assess whether these adults have any effect on the students' self-efficacy and the "people like me" syndrome that hinders some from engaging in STEM.
DATE: -
TEAM MEMBERS: Jesse Heines Daniel Walzer
resource project Media and Technology
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.
DATE: -
TEAM MEMBERS: Michael Horn
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
DATE: -
TEAM MEMBERS: Ruth Kermish-Allen Christine Bevc Karen Peterman
resource project Media and Technology
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE: -
TEAM MEMBERS: Sara Lacy Roger Tobin Nathaniel Brown Stamatis Vokos Rachel Scherr Kara Gray Lane Seeley Amy Robertson
resource project Public Programs
Health care in the United States is expensive and complex, and there are many competing interests that make it an increasing necessity for health care consumers to take an active role to better advocate for themselves and those who are impacted by the decisions that are made. Making effective health care choices requires both science literacy and critical thinking skills to understand and evaluate options. The Weighing the Evidence (tentative title) project team will work with medical experts, researchers, health and medicine journalists, and community partners to improve visitors’ critical analysis skills and ability to review evidence so that they can make informed health care decisions. To meet this goal a traveling exhibition will be developed utilizing a unique collection of historical and contemporary quack medical devices donated to the Science Museum of Minnesota when the Museum of Questionable Medical Devises closed in 2002. While the collection is rich in fun and entertainment, it also offers a multitude of opportunities to reflect on science, society and ethics, skepticism, and objectivity. This collection, along with interactive experiences, theater programs, outreach programming and a companion web site will provide visitors with the tools needed to become more knowledgeable health care consumers.
DATE: -
TEAM MEMBERS: Laurie Fink Bette Schmit
resource project Media and Technology
The American Museum of Natural History requests SEPA support for a five-year development and implementation project entitled "Human Health and 'Human Bulletins': Scientists and Teens Explore Health Sciences in the Museum and World At Large." The program has three complementary components: (1) the development of 7 new productions for the Museum's digital media/documentary exhibition program, Human Bulletins http://sciencebulletins.amnh.org) featuring the newest health-related research; (2) a mini-course, entitled Hot Topics in Health Research NOW, an intensive after school program covering genetics, epidemiology, human health and human evolution, including a section on ethics in research; and (3) A "drop-in" Human Bulletins Science Club, where students meet monthly to watch a Human Bulletin visual news program, engage in informal discussions with significant researchers in the fields of evolutionary science and human health. The main goals of this project are: (1) to inform young people about emerging health-related research by using the Human Bulletins as core content for programming and points of engagement; (2) to promote a life-long interest in science among participants by teaching them how health-related science research could potentially affect them or their families; (3) to empower teens to critically assess the science presented to them in the Museum and in the world at large by teaching them to break down the "information bytes" of the Human Bulletins and to analyze how stories are presented visually and how to find answers to questions raised by the Bulletins; (4) for the young people in the program to see themselves as participants in the Museum by developing "mentor" relationships with Museum staff. This will allow students to see AMNH as an enduring institution to be used as a resource throughout their education and careers; and (5) to give students the means to envision themselves with future careers in science, research and in museums (thus fostering new generation of culturally-diverse, culturally enriched scientific leaders) by introducing them to scientists in an informal setting where there are no consequences for making mistakes or asking questions. The students will be given "behind the scenes" looks at new career options through the scientists featured in the Bulletins and the NIH funded researchers on the Advisory Board presenting at the informal sessions. Ultimately, the project aims to give students to critically process the information they receive about public health, see the relevance of human health science to their lives and pursue careers in health science. All of these skills are measurable through formative and summative evaluation. This project will teach young people to understand information about public health that is presented to them through visual and popular media as well as through formal scientific texts. It will also teach them to think about how human health sciences impact their lives and how the decisions they make impact larger human health. Finally, the program will also encourage students to pursue careers and further information about public health.
DATE: -
TEAM MEMBERS: Monique Scott
resource project Media and Technology
Hispanic Role Models in Health Careers: Empowering Hispanic Nurses to Leverage Traditional Spanish language and New Social Media to Inspire the Next Generation of Culturally Diverse and Competent Health Care Professionals The National Association of Hispanic Nurses (NAHN), in association with the Hispanic Communications Network (HCN), proposes to address the shortage of bilingual professionals in all health fields by recruiting and interviewing bilingual role models and arranging to broadcast those interviews nationwide. Leveraging HCN's nationally broadcast health education radio shows, whose cumulative audiences are larger than NPR's 'All Things Considered,' this project has the potential to reach one out of every three US Hispanics during its first five years. This media campaign is intended to inspire Hispanic parents to encourage their children to study science and aspire to careers in the biomedical professions. It is also intended to inspire and empower Spanish-speaking adults from all walks of life to consider careers in the health professions. All broadcasts will tie to NAHN's interactive website so that students and adults interested in changing careers can find mentors and educational resources. NAHN will also use YouTube, Facebook, mobile phone applications, and other new and popular social media technologies to reach a broad cross-section of English speaking youth and young adults. In addition to the national media outputs, attendees at NAHN's annual conferences will have the opportunity to receive training in public speaking and media relations so they can more effectively use local media in their own communities to address health disparities and promote careers in the biomedical and health professions. NAHN will develop a standardized, bilingual Toolkit for public presentations. The Toolkit will include a Powerpoint presentation embedded with video containing gender- and other- stereotype-busting role model interviews with Hispanic nurses, links to an online database of volunteer mentors, and a bilingual terminology packet that will aid nurses in creating linguistic and cognitive bridges between audience and professional knowledge bases. We expect that the refined Toolkit will empower nurses and other health professionals to become more effective public health educators and career role models during their presentations at community health events, career fairs, achievement clubs, and school assemblies. An Advisory Committee of other health organizations, professionals, and advocates will recommend Role Models and provide periodic feedback. Bilingual independent evaluators associated with the UC Berkeley School of Public Health will conduct qualitative and quantitative formative, iterative, and summative evaluations throughout the project. Their recommendations and findings will be incorporated into the project design and deliverables and shared with relevant fields.
DATE: -
TEAM MEMBERS: Angie Millan