Can the news help you learn statistics? In "Numbers in the News," we’re asking people to read, watch, or listen to one of two versions of a news report that contains numbers, visualizations, or both. Then we’re asking them a series of questions about the credibility of that news report, as well as some of the inferences they make. Within each item in the series, we're reflecting on what the results might mean for journalists and other science (and especially quantitative) communicators.
The main page linked here contains details of methodology and will ultimately contain links to all the
On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations.
The
At the Ecsite Conference held in Copenhagen, Denmark, in June 2019, a pre-conference workshop was held entitled "Beyond fact-checking: addressing misinformation". This workshop brought together practitioners in science engagement alongside researchers on the topic of misinformation from across Europe and beyond to focus on that topic.
Following this workshop, Ecsite, and The Kavli Foundation who supported it, decided to put together this resource document, for anyone developing or implementing activities or exhibitions working to engage the public in science.
This document has been
Policymakers need data to make informed decisions. Local governments need data to justify policies like bans on single-use plastics. Federal agencies need information to set the conservation guidelines that protect endangered species. Data are also required to report on progress towards international policy targets, like the UN Sustainable Development Goals (SDGs).
But worldwide, we don’t have enough data to understand the current state of our environment, or effectively evaluate the impact of interventions. In 2018, Washington, DC banned plastic drinking straws while citing evidence that 3
DATE:
TEAM MEMBERS:
Anne BowserAlex LongMetis MelocheElizabeth NewburyMeg King
AHA! Island is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking (CT) concepts and practices. Education Development Center (EDC), WGBH’s research partner for the project, conducted an impact study with 108 English-speaking families (4- to 5-year-old children and their families) to test the promise of this CT learning intervention.
DATE:
TEAM MEMBERS:
Marisa WolskyHeather LavigneJessica AndrewsAshley Lewis-PresserLeslie CuellarRegan VidiksisCamille Ferguson
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS:
Ibrahim YeterAnastasia Marie RynearsonHoda EhsanAnnwesa DasguptaBarbara FagundesMuhsin MeneskeMonica Cardella
Computational Thinking (CT) is an often overlooked, but important, aspect of engineering thinking. This connection can be seen in Wing’s definition of CT, which includes a combination of mathematical and engineering thinking required to solve problems. While previous studies have shown that children are capable of engaging in multiple CT competencies, research has yet to explore the role that parents play in promoting these competencies in their children. In this study, we are taking a unique approach by investigating the role that a homeschool mother played in her child’s engagement in CT
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
Increasing demand for curricula and programming that supports computational thinking in K-2 settings motivates our research team to investigate how computational thinking can be understood, observed, and supported for this age group. This study has two phases: 1) developing definitions of computational thinking competencies, 2) identifying educational apps that can potentially promote computational thinking. For the first phase, we reviewed literatures and models that identified, defined and/or described computational thinking competencies. Using the model and literature review, we then
For the past two decades, researchers and educators have been interested in integrating engineering into K-12 learning experiences. More recently, computational thinking (CT) has gained increased attention in K-12 engineering education. Computational thinking is broader than programming and coding. Some describe computational thinking as crucial to engineering problem solving and critical to engineering habits of mind like systems thinking. However, few studies have explored how computational thinking is exhibited by children, and CT competencies for children have not been consistently defined
Informal learning environments such as science centers and museums are instrumental in the promotion of science, technology, engineering, and mathematics (STEM) education. These settings provide children with the chance to engage in self-directed activities that can create a of lifelong interest and persistence in STEM. On the other hand, the presence of parents in these settings allows children the opportunity to work together and engage in conversations that can boost understanding and enhance learning of STEM topics. To date, a considerable amount of research has focused on adult-child
The purpose of this paper is to provide a better understanding of Maine’s capability to promote 5th-12th graders’ engagement and achievement in STEM during out-of-school hours. The paper will provide a background for the design conference task of constructing “STEM intensives” that make optimal use of Maine’s resources and connect these resources with students in ways that make sense.